doi: 10.3934/dcdsb.2022121
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Global generalized solvability in the Keller-Segel system with singular sensitivity and arbitrary superlinear degradation

School of Mathematics and Computational Science, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China

* Corresponding author: Wenji Zhang

Received  January 2022 Revised  May 2022 Early access June 2022

Fund Project: The author was supported by the Scientific Research Funds of Hunan Provincial Education Department (No. 21C0356)

This paper considers the Neumann initial-boundary value problem for the chemotaxis system with singular sensitivity
$ \begin{equation*} \begin{split} \left\{ {\begin{array}{*{20}{l}} {{u_t} = \Delta u - \chi\nabla \cdot (\frac{u}{v}\nabla v) + f(u),}&{x \in \Omega ,t > 0,} \\ {{v_t} = \Delta v - v + u,}&{x \in \Omega ,t > 0,} \end{array}} \right. \end{split} \end{equation*} $
in a smooth bounded domain
$ \Omega \subset {\mathbb{R}^{n}} $
$ (n\geq2) $
, where
$ f\in C^{1}([0,\infty)) $
generalizes the logistic function
$ f(s) = \lambda s-\mu s^{\alpha} $
, with
$ \lambda\geq 0 $
,
$ \mu>0 $
and
$ \alpha>1 $
. We prove global existence of solutions to this system in an appropriately generalized sense for any
$ \chi>0 $
and
$ \alpha>1 $
.
Citation: Wenji Zhang. Global generalized solvability in the Keller-Segel system with singular sensitivity and arbitrary superlinear degradation. Discrete and Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2022121
References:
[1]

P. Biler, Global solutions to some parabolic-elliptic systems of chemotaxis, Adv. Math. Sci. Appl., 9 (1999), 347-359. 

[2]

X. Cao, Large time behavior in the logistic Keller-Segel model via maximal Sobolev regularity, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 3369-3378.  doi: 10.3934/dcdsb.2017141.

[3]

M. DingW. Wang and S. Zhou, Global existence of solutions to a fully parabolic chemotaxis system with singular sensitivity and logistic source, Nonlinear Anal. Real World Appl., 49 (2019), 286-311.  doi: 10.1016/j.nonrwa.2019.03.009.

[4]

M. Fuest, Approaching optimality in blow-up results for Keller-Segel systems with logistic-type dampening, Nonlinear Differ. Equ. Appl., 28 (2021), Paper No. 16, 17 pp. doi: 10.1007/s00030-021-00677-9.

[5]

K. Fujie, Boundedness in a fully parabolic chemotaxis system with singular sensitivity, J. Math. Anal. Appl., 424 (2015), 675-684.  doi: 10.1016/j.jmaa.2014.11.045.

[6]

K. Fujie and T. Senba, Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity, Discrete Contin. Dyn. Syst. B, 21 (2016), 81-102.  doi: 10.3934/dcdsb.2016.21.81.

[7]

K. FujieM. Winkler and T. Yokota, Boundedness of solutions to parabolic-elliptic Keller-Segel systems with signal-dependent sensitivity, Math. Methods Appl. Sci., 38 (2015), 1212-1224.  doi: 10.1002/mma.3149.

[8]

K. FujieM. Winkler and T. Yokota, Blow-up prevention by logistic sources in a parabolic-elliptic Keller-Segel system with singular sensitivity, Nonlinear Anal., 109 (2014), 56-71.  doi: 10.1016/j.na.2014.06.017.

[9]

X. He and S. Zheng, Convergence rate estimates of solutions in a higher dimensional chemotaxis system with logistic source, J. Math. Anal. Appl., 436 (2016), 970-982.  doi: 10.1016/j.jmaa.2015.12.058.

[10]

E. F. Keller and L. A. Segel, Travelling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30 (1971), 235-248. 

[11]

E. Lankeit and J. Lankeit, Classical solutions to a logistic chemotaxis model with singular sensitivity and signal absorption, Nonlinear Anal. Real World Appl., 46 (2019), 421-445.  doi: 10.1016/j.nonrwa.2018.09.012.

[12]

E. Lankeit and J. Lankeit, On the global generalized solvability of a chemotaxis model with signal absorption and logistic growth terms, Nonlinearity, 32 (2019), 1569-1596.  doi: 10.1088/1361-6544/aaf8c0.

[13]

J. Lankeit, A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 39 (2016), 394-404.  doi: 10.1002/mma.3489.

[14]

J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differential Equations, 258 (2015), 1158-1191.  doi: 10.1016/j.jde.2014.10.016.

[15]

J. Lankeit and M. Winkler, A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: Global solvability for large nonradial data, NoDEA Nonlinear Differential Equations Appl., 24 (2017), Paper No. 49, 33 pp. doi: 10.1007/s00030-017-0472-8.

[16]

T. Nagai and T. Senba, Behavior of radially symmetric solutions of a system related to chemotaxis, Nonlinear Anal., 30 (1997), 3837-3842.  doi: 10.1016/S0362-546X(96)00256-8.

[17]

T. Nagai and T. Senba, Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 145-156. 

[18]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469. 

[19]

K. Osaki and A. Yagi, Global existence of a chemotaxis-growth system in $R^{2}$, Adv. Math. Sci. Appl., 12 (2002), 587-606. 

[20]

J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.

[21]

C. Stinner and M. Winkler, Global weak solutions in a chemotaxis system with large singular sensitivity, Nonlinear Anal. Real World Appl., 12 (2011), 3727-3740.  doi: 10.1016/j.nonrwa.2011.07.006.

[22]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877.  doi: 10.1080/03605300701319003.

[23]

G. Viglialoro, Very weak global solutions to a parabolic-parabolic chemotaxis-system with logistic source, J. Math. Anal. Appl., 439 (2016), 197-212.  doi: 10.1016/j.jmaa.2016.02.069.

[24]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.

[25]

M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384 (2011), 261-272.  doi: 10.1016/j.jmaa.2011.05.057.

[26]

M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 34 (2011), 176-190.  doi: 10.1002/mma.1346.

[27]

M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differential Equations, 257 (2014), 1056-1077.  doi: 10.1016/j.jde.2014.04.023.

[28]

M. Winkler, Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities, SIAM. J. Math. Anal., 47 (2015), 3092-3115.  doi: 10.1137/140979708.

[29]

M. Winkler, Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2777-2793.  doi: 10.3934/dcdsb.2017135.

[30]

M. Winkler, Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation, Z. Angew. Math. Phys., 69 (2018), Paper No. 69, 40 pp. doi: 10.1007/s00033-018-0935-8.

[31]

M. Winkler, The role of superlinear damping in the construction of solutions to drift-diffusion problems with initial data in $L^1$, Adv. Nonlin. Anal., 9 (2020), 526-566.  doi: 10.1515/anona-2020-0013.

[32]

M. Winkler, $L^1$ solutions to parabolic Keller-Segel systems involving arbitrary superlinear degradation, Preprint.

[33]

J. Yan and M. Fuest, When do Keller-Segel systems with heterogeneous logistic sources admit generalized solutions?, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 4093-4109.  doi: 10.3934/dcdsb.2020275.

[34]

X. Zhao and S. Zheng, Global boundedness to a chemotaxis system with singular sensitivity and logistic source, Z. Angew. Math. Phys., 68 (2017), Paper No. 2, 13 pp. doi: 10.1007/s00033-016-0749-5.

[35]

X. Zhao and S. Zheng, Global existence and boundedness of solutions to a chemotaxis system with singular sensitivity and logistic-type source, J. Differential Equations, 267 (2019), 826-865.  doi: 10.1016/j.jde.2019.01.026.

show all references

References:
[1]

P. Biler, Global solutions to some parabolic-elliptic systems of chemotaxis, Adv. Math. Sci. Appl., 9 (1999), 347-359. 

[2]

X. Cao, Large time behavior in the logistic Keller-Segel model via maximal Sobolev regularity, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 3369-3378.  doi: 10.3934/dcdsb.2017141.

[3]

M. DingW. Wang and S. Zhou, Global existence of solutions to a fully parabolic chemotaxis system with singular sensitivity and logistic source, Nonlinear Anal. Real World Appl., 49 (2019), 286-311.  doi: 10.1016/j.nonrwa.2019.03.009.

[4]

M. Fuest, Approaching optimality in blow-up results for Keller-Segel systems with logistic-type dampening, Nonlinear Differ. Equ. Appl., 28 (2021), Paper No. 16, 17 pp. doi: 10.1007/s00030-021-00677-9.

[5]

K. Fujie, Boundedness in a fully parabolic chemotaxis system with singular sensitivity, J. Math. Anal. Appl., 424 (2015), 675-684.  doi: 10.1016/j.jmaa.2014.11.045.

[6]

K. Fujie and T. Senba, Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity, Discrete Contin. Dyn. Syst. B, 21 (2016), 81-102.  doi: 10.3934/dcdsb.2016.21.81.

[7]

K. FujieM. Winkler and T. Yokota, Boundedness of solutions to parabolic-elliptic Keller-Segel systems with signal-dependent sensitivity, Math. Methods Appl. Sci., 38 (2015), 1212-1224.  doi: 10.1002/mma.3149.

[8]

K. FujieM. Winkler and T. Yokota, Blow-up prevention by logistic sources in a parabolic-elliptic Keller-Segel system with singular sensitivity, Nonlinear Anal., 109 (2014), 56-71.  doi: 10.1016/j.na.2014.06.017.

[9]

X. He and S. Zheng, Convergence rate estimates of solutions in a higher dimensional chemotaxis system with logistic source, J. Math. Anal. Appl., 436 (2016), 970-982.  doi: 10.1016/j.jmaa.2015.12.058.

[10]

E. F. Keller and L. A. Segel, Travelling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30 (1971), 235-248. 

[11]

E. Lankeit and J. Lankeit, Classical solutions to a logistic chemotaxis model with singular sensitivity and signal absorption, Nonlinear Anal. Real World Appl., 46 (2019), 421-445.  doi: 10.1016/j.nonrwa.2018.09.012.

[12]

E. Lankeit and J. Lankeit, On the global generalized solvability of a chemotaxis model with signal absorption and logistic growth terms, Nonlinearity, 32 (2019), 1569-1596.  doi: 10.1088/1361-6544/aaf8c0.

[13]

J. Lankeit, A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 39 (2016), 394-404.  doi: 10.1002/mma.3489.

[14]

J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differential Equations, 258 (2015), 1158-1191.  doi: 10.1016/j.jde.2014.10.016.

[15]

J. Lankeit and M. Winkler, A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: Global solvability for large nonradial data, NoDEA Nonlinear Differential Equations Appl., 24 (2017), Paper No. 49, 33 pp. doi: 10.1007/s00030-017-0472-8.

[16]

T. Nagai and T. Senba, Behavior of radially symmetric solutions of a system related to chemotaxis, Nonlinear Anal., 30 (1997), 3837-3842.  doi: 10.1016/S0362-546X(96)00256-8.

[17]

T. Nagai and T. Senba, Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 145-156. 

[18]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469. 

[19]

K. Osaki and A. Yagi, Global existence of a chemotaxis-growth system in $R^{2}$, Adv. Math. Sci. Appl., 12 (2002), 587-606. 

[20]

J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.

[21]

C. Stinner and M. Winkler, Global weak solutions in a chemotaxis system with large singular sensitivity, Nonlinear Anal. Real World Appl., 12 (2011), 3727-3740.  doi: 10.1016/j.nonrwa.2011.07.006.

[22]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877.  doi: 10.1080/03605300701319003.

[23]

G. Viglialoro, Very weak global solutions to a parabolic-parabolic chemotaxis-system with logistic source, J. Math. Anal. Appl., 439 (2016), 197-212.  doi: 10.1016/j.jmaa.2016.02.069.

[24]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.

[25]

M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384 (2011), 261-272.  doi: 10.1016/j.jmaa.2011.05.057.

[26]

M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 34 (2011), 176-190.  doi: 10.1002/mma.1346.

[27]

M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differential Equations, 257 (2014), 1056-1077.  doi: 10.1016/j.jde.2014.04.023.

[28]

M. Winkler, Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities, SIAM. J. Math. Anal., 47 (2015), 3092-3115.  doi: 10.1137/140979708.

[29]

M. Winkler, Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2777-2793.  doi: 10.3934/dcdsb.2017135.

[30]

M. Winkler, Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation, Z. Angew. Math. Phys., 69 (2018), Paper No. 69, 40 pp. doi: 10.1007/s00033-018-0935-8.

[31]

M. Winkler, The role of superlinear damping in the construction of solutions to drift-diffusion problems with initial data in $L^1$, Adv. Nonlin. Anal., 9 (2020), 526-566.  doi: 10.1515/anona-2020-0013.

[32]

M. Winkler, $L^1$ solutions to parabolic Keller-Segel systems involving arbitrary superlinear degradation, Preprint.

[33]

J. Yan and M. Fuest, When do Keller-Segel systems with heterogeneous logistic sources admit generalized solutions?, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 4093-4109.  doi: 10.3934/dcdsb.2020275.

[34]

X. Zhao and S. Zheng, Global boundedness to a chemotaxis system with singular sensitivity and logistic source, Z. Angew. Math. Phys., 68 (2017), Paper No. 2, 13 pp. doi: 10.1007/s00033-016-0749-5.

[35]

X. Zhao and S. Zheng, Global existence and boundedness of solutions to a chemotaxis system with singular sensitivity and logistic-type source, J. Differential Equations, 267 (2019), 826-865.  doi: 10.1016/j.jde.2019.01.026.

[1]

Guoqiang Ren, Bin Liu. Global boundedness of solutions to a chemotaxis-fluid system with singular sensitivity and logistic source. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3843-3883. doi: 10.3934/cpaa.2020170

[2]

Xiangdong Zhao. Global boundedness of classical solutions to a logistic chemotaxis system with singular sensitivity. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5095-5100. doi: 10.3934/dcdsb.2020334

[3]

Jie Zhao. A quasilinear parabolic-parabolic chemotaxis model with logistic source and singular sensitivity. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3487-3513. doi: 10.3934/dcdsb.2021193

[4]

Tomomi Yokota, Noriaki Yoshino. Existence of solutions to chemotaxis dynamics with logistic source. Conference Publications, 2015, 2015 (special) : 1125-1133. doi: 10.3934/proc.2015.1125

[5]

Ling Liu, Jiashan Zheng. Global existence and boundedness of solution of a parabolic-parabolic-ODE chemotaxis-haptotaxis model with (generalized) logistic source. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3357-3377. doi: 10.3934/dcdsb.2018324

[6]

Abelardo Duarte-Rodríguez, Lucas C. F. Ferreira, Élder J. Villamizar-Roa. Global existence for an attraction-repulsion chemotaxis fluid model with logistic source. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 423-447. doi: 10.3934/dcdsb.2018180

[7]

Guoqiang Ren, Heping Ma. Global existence in a chemotaxis system with singular sensitivity and signal production. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 343-360. doi: 10.3934/dcdsb.2021045

[8]

Langhao Zhou, Liangwei Wang, Chunhua Jin. Global solvability to a singular chemotaxis-consumption model with fast and slow diffusion and logistic source. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2065-2075. doi: 10.3934/dcdsb.2021122

[9]

Rachidi B. Salako, Wenxian Shen. Existence of traveling wave solutions to parabolic-elliptic-elliptic chemotaxis systems with logistic source. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 293-319. doi: 10.3934/dcdss.2020017

[10]

Ke Lin, Chunlai Mu. Convergence of global and bounded solutions of a two-species chemotaxis model with a logistic source. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2233-2260. doi: 10.3934/dcdsb.2017094

[11]

Ke Lin, Chunlai Mu. Global dynamics in a fully parabolic chemotaxis system with logistic source. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5025-5046. doi: 10.3934/dcds.2016018

[12]

Tobias Black. Global generalized solutions to a parabolic-elliptic Keller-Segel system with singular sensitivity. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 119-137. doi: 10.3934/dcdss.2020007

[13]

Wei Wang, Yan Li, Hao Yu. Global boundedness in higher dimensions for a fully parabolic chemotaxis system with singular sensitivity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3663-3669. doi: 10.3934/dcdsb.2017147

[14]

Pan Zheng, Chunlai Mu, Xuegang Hu. Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2299-2323. doi: 10.3934/dcds.2015.35.2299

[15]

Chunhua Jin. Global classical solution and stability to a coupled chemotaxis-fluid model with logistic source. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3547-3566. doi: 10.3934/dcds.2018150

[16]

Qian Zhao, Bin Liu. Global generalized solutions to the forager-exploiter model with logistic growth. Discrete and Continuous Dynamical Systems - B, 2022, 27 (9) : 5255-5282. doi: 10.3934/dcdsb.2021273

[17]

Xie Li, Zhaoyin Xiang. Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3503-3531. doi: 10.3934/dcds.2015.35.3503

[18]

Lu Xu, Chunlai Mu, Qiao Xin. Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3031-3043. doi: 10.3934/dcds.2020396

[19]

Zhengce Zhang, Yan Li. Global existence and gradient blowup of solutions for a semilinear parabolic equation with exponential source. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 3019-3029. doi: 10.3934/dcdsb.2014.19.3019

[20]

Jie Zhao. Large time behavior of solution to quasilinear chemotaxis system with logistic source. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1737-1755. doi: 10.3934/dcds.2020091

2021 Impact Factor: 1.497

Article outline

[Back to Top]