doi: 10.3934/dcdsb.2022124
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Polynomial preserving recovery and a posteriori error estimates for the two-dimensional quad-curl problem

1. 

Beijing Computational Science Research Center, Beijing 100193, China

2. 

Department of Mathematics, Wayne State University, Detroit, MI 48202, USA

* Corresponding author: Zhimin Zhang

Received  February 2022 Revised  May 2022 Early access June 2022

Fund Project: This work is supported in part by the National Natural Science Foundation of China via grants NSFC 11871092, 12131005 and NSAF U1930402

We analyze superconvergence property of the lowest order curl-curl conforming finite element method based on polynomial preserving recovery (PPR) for the two-dimensional quad-curl problem on triangular meshes. We observe that the linear interpolation of $ \nabla \times \boldsymbol u_h $ ($ \boldsymbol u_h $ is the numerical solution) can be written as a linear combination of solutions of two discrete Poisson equations obtained by the usual linear finite element method. Therefore, the superconvergence analysis of the quad-curl problem can be attributed to the analysis of the Poisson equation. Then, with the help of the existing superconvergence results for the Poisson equation, we prove that recovered $ \nabla \times \nabla \times \boldsymbol u_h $ (by applying PPR to $ \nabla \times \boldsymbol u_h $) is superconvergent to $ \nabla \times \nabla \times \boldsymbol u $. Based on this superconvergent result, we derive an asymptotically exact a posteriori error estimator. Numerical tests are provided to demonstrate effectiveness of the proposed method and confirm our theoretical findings.

Citation: Baiju Zhang, Zhimin Zhang. Polynomial preserving recovery and a posteriori error estimates for the two-dimensional quad-curl problem. Discrete and Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2022124
References:
[1]

S. C. BrennerJ. Sun and L.-Y. Sung, Hodge decomposition methods for a quad-curl problem on planar domains, J. Sci. Comput., 73 (2017), 495-513.  doi: 10.1007/s10915-017-0449-0.

[2]

F. Cakoni and H. Haddar, A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media, Inverse Probl. Imaging, 1 (2007), 443-456.  doi: 10.3934/ipi.2007.1.443.

[3]

G. Chen, J. Cui and L. Xu, A hybridizable discontinuous Galerkin method for the quad-curl problem, J. Sci. Comput., 87 (2021), Paper No. 16, 23 pp. doi: 10.1007/s10915-021-01420-3.

[4]

L. Chen, Ifem: An innovative finite element methods package in matlab, Preprint, University of Maryland.

[5]

L. Chen and J. Xu, A posteriori error estimator by post-processing, in Adaptive Computations: Theory and Algorithms (eds. T. Tang and J. Xu), no. 6 in Mathematics Monograph Series, Science Press, 2007, chapter 2, 34-67.

[6]

W. Dörfler, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal., 33 (1996), 1106-1124.  doi: 10.1137/0733054.

[7]

H. GuoZ. ZhangR. Zhao and Q. Zou, Polynomial preserving recovery on boundary, J. Comput. Appl. Math., 307 (2016), 119-133.  doi: 10.1016/j.cam.2016.03.003.

[8]

Q. HongJ. HuS. Shu and J. Xu, A discontinuous Galerkin method for the fourth-order curl problem, J. Comput. Math., 30 (2012), 565-578.  doi: 10.4208/jcm.1206-m3572.

[9]

K. Hu, Q. Zhang and Z. Zhang, Simple curl-curl-conforming finite elements in two dimensions, SIAM J. Sci. Comput., 42 (2020), A3859–3877. (arXiv: 2004.12507v2, 2021) doi: 10.1137/20M1333390.

[10]

P. Monk and J. Sun, Finite element methods for Maxwell's transmission eigenvalues, SIAM J. Sci. Comput., 34 (2012), B247–B264. doi: 10.1137/110839990.

[11]

A. Naga and Z. Zhang, The polynomial-preserving recovery for higher order finite element methods in 2D and 3D, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 769-798.  doi: 10.3934/dcdsb.2005.5.769.

[12]

A. Naga and Z. Zhang, A posteriori error estimates based on the polynomial preserving recovery, SIAM J. Numer. Anal., 42 (2004), 1780-1800.  doi: 10.1137/S0036142903413002.

[13]

J. Sun, Iterative methods for transmission eigenvalues, SIAM J. Numer. Anal., 49 (2011), 1860-1874.  doi: 10.1137/100785478.

[14]

J. Sun, A mixed FEM for the quad-curl eigenvalue problem, Numer. Math., 132 (2016), 185-200.  doi: 10.1007/s00211-015-0708-7.

[15]

Z. SunF. GaoC. Wang and Y. Zhang, A quadratic $C^0$ interior penalty method for the quad-curl problem, Math. Model. Anal., 25 (2020), 208-225.  doi: 10.3846/mma.2020.9796.

[16]

R. Verführt, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Teubner, Stuttgart., 1996.

[17]

L. WangQ. ZhangJ. Sun and Z. Zhang, A priori and a posteriori error estimates for the quad-curl eigenvalue problem, ESAIM Math. Model. Numer. Anal., 56 (2022), 1027-1051.  doi: 10.1051/m2an/2022027.

[18]

H. Wu and Z. Zhang, Can we have superconvergent gradient recovery under adaptive meshes?, SIAM J. Numer. Anal., 45 (2007), 1701-1722.  doi: 10.1137/060661430.

[19]

J. Xu and Z. Zhang, Analysis of recovery type a posteriori error estimators for mildly structured grids, Math. Comp., 73 (2004), 1139-1152.  doi: 10.1090/S0025-5718-03-01600-4.

[20]

Q. Zhang, L. Wang and Z. Zhang, $H$(curl$^2)$-conforming finite elements in 2 dimensions and applications to the quad-curl problem, SIAM J. Sci. Comput., 41 (2019), A1527–A1547. doi: 10.1137/18M1199988.

[21]

Z. Zhang and A. Naga, A new finite element gradient recovery method: Superconvergence property, SIAM J. Sci. Comput., 26 (2005), 1192-1213.  doi: 10.1137/S1064827503402837.

[22]

B. ZhengQ. Hu and J. Xu, A nonconforming finite element method for fourth order curl equations in $\mathbb R^3$, Math. Comp., 80 (2011), 1871-1886.  doi: 10.1090/S0025-5718-2011-02480-4.

[23]

O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Engrg., 24 (1987), 337-357.  doi: 10.1002/nme.1620240206.

[24]

O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. I. The recovery technique, Internat. J. Numer. Methods Engrg., 33 (1992), 1331-1364.  doi: 10.1002/nme.1620330702.

[25]

O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. II. Error estimates and adaptivity, Internat. J. Numer. Methods Engrg., 33 (1992), 1365-1382.  doi: 10.1002/nme.1620330703.

show all references

References:
[1]

S. C. BrennerJ. Sun and L.-Y. Sung, Hodge decomposition methods for a quad-curl problem on planar domains, J. Sci. Comput., 73 (2017), 495-513.  doi: 10.1007/s10915-017-0449-0.

[2]

F. Cakoni and H. Haddar, A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media, Inverse Probl. Imaging, 1 (2007), 443-456.  doi: 10.3934/ipi.2007.1.443.

[3]

G. Chen, J. Cui and L. Xu, A hybridizable discontinuous Galerkin method for the quad-curl problem, J. Sci. Comput., 87 (2021), Paper No. 16, 23 pp. doi: 10.1007/s10915-021-01420-3.

[4]

L. Chen, Ifem: An innovative finite element methods package in matlab, Preprint, University of Maryland.

[5]

L. Chen and J. Xu, A posteriori error estimator by post-processing, in Adaptive Computations: Theory and Algorithms (eds. T. Tang and J. Xu), no. 6 in Mathematics Monograph Series, Science Press, 2007, chapter 2, 34-67.

[6]

W. Dörfler, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal., 33 (1996), 1106-1124.  doi: 10.1137/0733054.

[7]

H. GuoZ. ZhangR. Zhao and Q. Zou, Polynomial preserving recovery on boundary, J. Comput. Appl. Math., 307 (2016), 119-133.  doi: 10.1016/j.cam.2016.03.003.

[8]

Q. HongJ. HuS. Shu and J. Xu, A discontinuous Galerkin method for the fourth-order curl problem, J. Comput. Math., 30 (2012), 565-578.  doi: 10.4208/jcm.1206-m3572.

[9]

K. Hu, Q. Zhang and Z. Zhang, Simple curl-curl-conforming finite elements in two dimensions, SIAM J. Sci. Comput., 42 (2020), A3859–3877. (arXiv: 2004.12507v2, 2021) doi: 10.1137/20M1333390.

[10]

P. Monk and J. Sun, Finite element methods for Maxwell's transmission eigenvalues, SIAM J. Sci. Comput., 34 (2012), B247–B264. doi: 10.1137/110839990.

[11]

A. Naga and Z. Zhang, The polynomial-preserving recovery for higher order finite element methods in 2D and 3D, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 769-798.  doi: 10.3934/dcdsb.2005.5.769.

[12]

A. Naga and Z. Zhang, A posteriori error estimates based on the polynomial preserving recovery, SIAM J. Numer. Anal., 42 (2004), 1780-1800.  doi: 10.1137/S0036142903413002.

[13]

J. Sun, Iterative methods for transmission eigenvalues, SIAM J. Numer. Anal., 49 (2011), 1860-1874.  doi: 10.1137/100785478.

[14]

J. Sun, A mixed FEM for the quad-curl eigenvalue problem, Numer. Math., 132 (2016), 185-200.  doi: 10.1007/s00211-015-0708-7.

[15]

Z. SunF. GaoC. Wang and Y. Zhang, A quadratic $C^0$ interior penalty method for the quad-curl problem, Math. Model. Anal., 25 (2020), 208-225.  doi: 10.3846/mma.2020.9796.

[16]

R. Verführt, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Teubner, Stuttgart., 1996.

[17]

L. WangQ. ZhangJ. Sun and Z. Zhang, A priori and a posteriori error estimates for the quad-curl eigenvalue problem, ESAIM Math. Model. Numer. Anal., 56 (2022), 1027-1051.  doi: 10.1051/m2an/2022027.

[18]

H. Wu and Z. Zhang, Can we have superconvergent gradient recovery under adaptive meshes?, SIAM J. Numer. Anal., 45 (2007), 1701-1722.  doi: 10.1137/060661430.

[19]

J. Xu and Z. Zhang, Analysis of recovery type a posteriori error estimators for mildly structured grids, Math. Comp., 73 (2004), 1139-1152.  doi: 10.1090/S0025-5718-03-01600-4.

[20]

Q. Zhang, L. Wang and Z. Zhang, $H$(curl$^2)$-conforming finite elements in 2 dimensions and applications to the quad-curl problem, SIAM J. Sci. Comput., 41 (2019), A1527–A1547. doi: 10.1137/18M1199988.

[21]

Z. Zhang and A. Naga, A new finite element gradient recovery method: Superconvergence property, SIAM J. Sci. Comput., 26 (2005), 1192-1213.  doi: 10.1137/S1064827503402837.

[22]

B. ZhengQ. Hu and J. Xu, A nonconforming finite element method for fourth order curl equations in $\mathbb R^3$, Math. Comp., 80 (2011), 1871-1886.  doi: 10.1090/S0025-5718-2011-02480-4.

[23]

O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Engrg., 24 (1987), 337-357.  doi: 10.1002/nme.1620240206.

[24]

O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. I. The recovery technique, Internat. J. Numer. Methods Engrg., 33 (1992), 1331-1364.  doi: 10.1002/nme.1620330702.

[25]

O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. II. Error estimates and adaptivity, Internat. J. Numer. Methods Engrg., 33 (1992), 1365-1382.  doi: 10.1002/nme.1620330703.

Figure 1.  Notation in the patch $ \Omega_e $
Figure 2.  Four types of uniform meshes (a) Regular pattern; (b) Chevron pattern; (c) Criss-cross pattern; (d)Union-Jack pattern
Figure 3.  The errors of $ \left\|(\nabla \times)^{2}\left(\boldsymbol{u}-\boldsymbol{u}_{h}\right)\right\|_{0} / \left\|(\nabla \times)^{2} \boldsymbol{u}\right\|_{0} $ and $ \left\|(\nabla \times)^{2} \boldsymbol{u}-G_{h}^{\perp} I_{h} \nabla \times \boldsymbol{u}_{h}\right\|_{0} / \left\|(\nabla \times)^{2} \boldsymbol{u}\right\|_{0} $ for (a) Regular pattern; (b) Chevron pattern; (c) Criss-cross pattern; (d) Union-Jack pattern (the lowest order case)
Figure 4.  The errors of $ \left\|(\nabla \times)^{2}\left(\boldsymbol{u}-\boldsymbol{u}_{h}\right)\right\|_{0} / \left\|(\nabla \times)^{2} \boldsymbol{u}\right\|_{0} $, $ \left\|(\nabla \times)^{2} \boldsymbol{u}-G_{h}^{\perp} I_{h} \nabla \times \boldsymbol{u}_{h}\right\|_{0} / \left\|(\nabla \times)^{2} \boldsymbol{u}\right\|_{0} $ and $ \left\|(\nabla \times)^{2} \boldsymbol{u}-G_{h}^{\perp} I_{h} \nabla \times \boldsymbol{u}_{h}\right\|_{\infty, N}/\left\|(\nabla \times)^{2} \boldsymbol{u}\right\|_{\infty, N} $ for (a) Regular pattern; (b) Chevron pattern; (c) Criss-cross pattern; (d) Union-Jack pattern (the higher order case)
Figure 5.  The initial mesh (left) and the adaptively refined mesh (right) after 20 adaptive iterations (the lowest order case)
Figure 6.  Numerical result for Example 2: (a) Numerical errors; (b) Effective index (c) $ \left\|p-p_{h}\right\|_{0} $ and $ \left\|p-\bar{p}_{h}\right\|_{0} $ (the lowest order case)
Figure 7.  The initial mesh (left) and the adaptively refined mesh (right) after 20 adaptive (the higher order case) iterations
Figure 8.  Numerical result for Example 2: (a) Numerical errors; (b) Effective index (c) $ \left\|p-p_{h}\right\|_{0} $ and $ \left\|p-\bar{p}_{h}\right\|_{0} $ (the higher order case)
Table 1.  Example 1: Numerical results by the lowest-order curl-curl conforming element on different mesh patterns
Mesh $ N $ $ \frac{ \left\|\boldsymbol{u}-\boldsymbol{u}_{h}\right\|_{0} }{\|\boldsymbol{u}\|_{0}} $ rate $ \frac{ \left\|(\nabla \times)^{2}\left(\boldsymbol{u}-\boldsymbol{u}_{h}\right)\right\|_{0} }{ \left\|(\nabla \times)^{2} \boldsymbol{u}\right\|_{0} } $ rate $ \frac{ \left\|(\nabla \times)^{2} \boldsymbol{u}-G_{h}^{\perp} I_{h} \nabla \times \boldsymbol{u}_{h}\right\|_{0} }{ \left\|(\nabla \times)^{2} \boldsymbol{u}\right\|_{0} } $ rate $ \left\|p-p_{h}\right\|_{0} $
81 5.585e-01 6.557e-01 8.166e-01 3.722e-07
289 2.615e-01 0.60 3.883e-01 0.41 3.932e-01 0.57 1.040e-10
Regular 1089 1.279e-01 0.54 2.041e-01 0.48 1.297e-01 0.84 8.063e-11
4225 6.352e-02 0.52 1.034e-01 0.50 3.544e-02 0.96 5.228e-10
16641 3.170e-02 0.51 5.188e-02 0.50 9.108e-03 0.99 4.948e-09
66049 1.585e-02 0.50 2.596e-02 0.50 2.298e-03 1.00 5.293e-08
81 4.980e-01 6.597e-01 8.234e-01 5.743e-05
289 2.469e-01 0.55 3.843e-01 0.42 3.390e-01 0.70 6.862e-08
Chevron 1089 1.258e-01 0.51 2.032e-01 0.48 1.044e-01 0.89 8.795e-11
4225 6.325e-02 0.51 1.033e-01 0.50 2.786e-02 0.97 9.234e-10
16641 3.167e-02 0.50 5.186e-02 0.50 7.103e-03 1.00 7.202e-09
66049 1.584e-02 0.50 2.596e-02 0.50 1.787e-03 1.00 6.719e-08
145 3.586e-01 4.975e-01 6.558e-01 3.776e-08
545 1.777e-01 0.53 2.556e-01 0.50 2.232e-01 0.81 3.451e-11
Criss-cross 2113 9.066e-02 0.50 1.286e-01 0.51 6.367e-02 0.93 3.579e-10
8321 4.560e-02 0.50 6.442e-02 0.50 1.668e-02 0.98 2.953e-09
33025 2.284e-02 0.50 3.222e-02 0.50 4.246e-03 0.99 3.739e-08
131585 1.142e-02 0.50 1.611e-02 0.50 1.069e-03 1.00 2.450e-07
81 4.148e-01 5.476e-01 8.964e-01 1.276e-11
289 2.443e-01 0.42 3.695e-01 0.31 4.428e-01 0.55 3.624e-10
Union-Jack 1089 1.252e-01 0.50 1.902e-01 0.50 1.431e-01 0.85 8.954e-11
4225 6.316e-02 0.50 9.580e-02 0.51 3.869e-02 0.97 8.687e-10
16641 3.166e-02 0.50 4.799e-02 0.50 9.899e-03 0.99 7.013e-09
66049 1.584e-02 0.50 2.401e-02 0.50 2.493e-03 1.00 7.267e-08
Mesh $ N $ $ \frac{ \left\|\boldsymbol{u}-\boldsymbol{u}_{h}\right\|_{0} }{\|\boldsymbol{u}\|_{0}} $ rate $ \frac{ \left\|(\nabla \times)^{2}\left(\boldsymbol{u}-\boldsymbol{u}_{h}\right)\right\|_{0} }{ \left\|(\nabla \times)^{2} \boldsymbol{u}\right\|_{0} } $ rate $ \frac{ \left\|(\nabla \times)^{2} \boldsymbol{u}-G_{h}^{\perp} I_{h} \nabla \times \boldsymbol{u}_{h}\right\|_{0} }{ \left\|(\nabla \times)^{2} \boldsymbol{u}\right\|_{0} } $ rate $ \left\|p-p_{h}\right\|_{0} $
81 5.585e-01 6.557e-01 8.166e-01 3.722e-07
289 2.615e-01 0.60 3.883e-01 0.41 3.932e-01 0.57 1.040e-10
Regular 1089 1.279e-01 0.54 2.041e-01 0.48 1.297e-01 0.84 8.063e-11
4225 6.352e-02 0.52 1.034e-01 0.50 3.544e-02 0.96 5.228e-10
16641 3.170e-02 0.51 5.188e-02 0.50 9.108e-03 0.99 4.948e-09
66049 1.585e-02 0.50 2.596e-02 0.50 2.298e-03 1.00 5.293e-08
81 4.980e-01 6.597e-01 8.234e-01 5.743e-05
289 2.469e-01 0.55 3.843e-01 0.42 3.390e-01 0.70 6.862e-08
Chevron 1089 1.258e-01 0.51 2.032e-01 0.48 1.044e-01 0.89 8.795e-11
4225 6.325e-02 0.51 1.033e-01 0.50 2.786e-02 0.97 9.234e-10
16641 3.167e-02 0.50 5.186e-02 0.50 7.103e-03 1.00 7.202e-09
66049 1.584e-02 0.50 2.596e-02 0.50 1.787e-03 1.00 6.719e-08
145 3.586e-01 4.975e-01 6.558e-01 3.776e-08
545 1.777e-01 0.53 2.556e-01 0.50 2.232e-01 0.81 3.451e-11
Criss-cross 2113 9.066e-02 0.50 1.286e-01 0.51 6.367e-02 0.93 3.579e-10
8321 4.560e-02 0.50 6.442e-02 0.50 1.668e-02 0.98 2.953e-09
33025 2.284e-02 0.50 3.222e-02 0.50 4.246e-03 0.99 3.739e-08
131585 1.142e-02 0.50 1.611e-02 0.50 1.069e-03 1.00 2.450e-07
81 4.148e-01 5.476e-01 8.964e-01 1.276e-11
289 2.443e-01 0.42 3.695e-01 0.31 4.428e-01 0.55 3.624e-10
Union-Jack 1089 1.252e-01 0.50 1.902e-01 0.50 1.431e-01 0.85 8.954e-11
4225 6.316e-02 0.50 9.580e-02 0.51 3.869e-02 0.97 8.687e-10
16641 3.166e-02 0.50 4.799e-02 0.50 9.899e-03 0.99 7.013e-09
66049 1.584e-02 0.50 2.401e-02 0.50 2.493e-03 1.00 7.267e-08
Table 2.  Example 1: Numerical results by the higher order curl-curl conforming element on different mesh patterns
Mesh $ N $ $ \frac{ \left\|\boldsymbol{u}-\boldsymbol{u}_{h}\right\|_{0} }{\|\boldsymbol{u}\|_{0}} $ rate $ \frac{ \left\|(\nabla \times)^{2}\left(\boldsymbol{u}-\boldsymbol{u}_{h}\right)\right\|_{0} }{ \left\|(\nabla \times)^{2} \boldsymbol{u}\right\|_{0} } $ rate $ \frac{ \left\|(\nabla \times)^{2} \boldsymbol{u}-G_{h}^{\perp} I_{h} \nabla \times \boldsymbol{u}_{h}\right\|_{0} }{ \left\|(\nabla \times)^{2} \boldsymbol{u}\right\|_{0} } $ rate $ \frac{\left\|(\nabla \times)^{2} \boldsymbol{u}-G_{h}^{\perp} I_{h} \nabla \times \boldsymbol{u}_{h}\right\|_{\infty, N}}{\left\|(\nabla \times)^{2} \boldsymbol{u}\right\|_{\infty, N}} $ rate $ \left\|p-p_{h}\right\|_{0} $
193 2.172e-01 2.330e-01 6.035e-01 5.858e-01 1.260e-06
705 6.330e-02 0.95 7.134e-02 0.91 1.860e-01 0.91 1.620e-01 0.99 2.586e-10
Regular 2689 1.642e-02 1.01 1.980e-02 0.96 2.021e-02 1.66 1.617e-02 1.72 2.655e-10
10497 4.135e-03 1.01 5.137e-03 0.99 1.612e-03 1.86 1.132e-03 1.95 3.119e-09
41473 1.035e-03 1.01 1.298e-03 1.00 1.294e-04 1.84 7.298e-05 2.00 5.176e-08
164865 2.587e-04 1.00 3.253e-04 1.00 1.107e-05 1.78 4.594e-06 2.00 8.128e-07
193 2.341e-01 2.372e-01 6.796e-01 6.794e-01 2.712e-06
705 6.517e-02 0.99 7.106e-02 0.93 1.743e-01 1.05 1.302e-01 1.28 7.263e-10
Chevron 2689 1.647e-02 1.03 1.903e-02 0.98 1.828e-02 1.68 1.948e-02 1.42 1.381e-10
10497 4.113e-03 1.02 4.855e-03 1.00 1.681e-03 1.75 2.543e-03 1.49 2.192e-09
41473 1.027e-03 1.01 1.220e-03 1.01 1.861e-04 1.60 3.182e-04 1.51 2.705e-08
164865 2.564e-04 1.01 3.054e-04 1.00 2.376e-05 1.49 3.974e-05 1.51 4.180e-07
353 1.229e-01 1.159e-01 3.876e-01 4.581e-01 7.219e-09
1345 3.307e-02 0.98 3.218e-02 0.96 5.325e-02 1.48 5.674e-02 1.56 3.201e-11
Criss-cross 5249 8.442e-03 1.00 8.365e-03 0.99 4.282e-03 1.85 4.302e-03 1.89 3.095e-10
20737 2.122e-03 1.01 2.114e-03 1.00 3.315e-04 1.86 2.826e-04 1.98 3.293e-09
82433 5.312e-04 1.00 5.301e-04 1.00 3.029e-05 1.73 2.928e-05 1.64 3.004e-08
328705 1.329e-04 1.00 1.326e-04 1.00 3.320e-06 1.60 3.356e-06 1.57 2.800e-07
193 2.598e-01 2.609e-01 6.164e-01 6.926e-01 2.712e-06
705 6.387e-02 1.08 6.818e-02 1.04 1.577e-01 1.05 1.336e-01 1.27 7.470e-10
Union-Jack 2689 1.610e-02 1.03 1.854e-02 0.97 1.568e-02 1.72 1.327e-02 1.73 1.639e-10
10497 4.020e-03 1.02 4.767e-03 1.00 1.362e-03 1.79 1.370e-03 1.67 1.687e-09
41473 1.003e-03 1.01 1.201e-03 1.00 1.393e-04 1.66 1.580e-04 1.57 2.933e-08
164865 2.505e-04 1.01 3.008e-04 1.00 1.603e-05 1.57 1.918e-05 1.53 3.935e-07
Mesh $ N $ $ \frac{ \left\|\boldsymbol{u}-\boldsymbol{u}_{h}\right\|_{0} }{\|\boldsymbol{u}\|_{0}} $ rate $ \frac{ \left\|(\nabla \times)^{2}\left(\boldsymbol{u}-\boldsymbol{u}_{h}\right)\right\|_{0} }{ \left\|(\nabla \times)^{2} \boldsymbol{u}\right\|_{0} } $ rate $ \frac{ \left\|(\nabla \times)^{2} \boldsymbol{u}-G_{h}^{\perp} I_{h} \nabla \times \boldsymbol{u}_{h}\right\|_{0} }{ \left\|(\nabla \times)^{2} \boldsymbol{u}\right\|_{0} } $ rate $ \frac{\left\|(\nabla \times)^{2} \boldsymbol{u}-G_{h}^{\perp} I_{h} \nabla \times \boldsymbol{u}_{h}\right\|_{\infty, N}}{\left\|(\nabla \times)^{2} \boldsymbol{u}\right\|_{\infty, N}} $ rate $ \left\|p-p_{h}\right\|_{0} $
193 2.172e-01 2.330e-01 6.035e-01 5.858e-01 1.260e-06
705 6.330e-02 0.95 7.134e-02 0.91 1.860e-01 0.91 1.620e-01 0.99 2.586e-10
Regular 2689 1.642e-02 1.01 1.980e-02 0.96 2.021e-02 1.66 1.617e-02 1.72 2.655e-10
10497 4.135e-03 1.01 5.137e-03 0.99 1.612e-03 1.86 1.132e-03 1.95 3.119e-09
41473 1.035e-03 1.01 1.298e-03 1.00 1.294e-04 1.84 7.298e-05 2.00 5.176e-08
164865 2.587e-04 1.00 3.253e-04 1.00 1.107e-05 1.78 4.594e-06 2.00 8.128e-07
193 2.341e-01 2.372e-01 6.796e-01 6.794e-01 2.712e-06
705 6.517e-02 0.99 7.106e-02 0.93 1.743e-01 1.05 1.302e-01 1.28 7.263e-10
Chevron 2689 1.647e-02 1.03 1.903e-02 0.98 1.828e-02 1.68 1.948e-02 1.42 1.381e-10
10497 4.113e-03 1.02 4.855e-03 1.00 1.681e-03 1.75 2.543e-03 1.49 2.192e-09
41473 1.027e-03 1.01 1.220e-03 1.01 1.861e-04 1.60 3.182e-04 1.51 2.705e-08
164865 2.564e-04 1.01 3.054e-04 1.00 2.376e-05 1.49 3.974e-05 1.51 4.180e-07
353 1.229e-01 1.159e-01 3.876e-01 4.581e-01 7.219e-09
1345 3.307e-02 0.98 3.218e-02 0.96 5.325e-02 1.48 5.674e-02 1.56 3.201e-11
Criss-cross 5249 8.442e-03 1.00 8.365e-03 0.99 4.282e-03 1.85 4.302e-03 1.89 3.095e-10
20737 2.122e-03 1.01 2.114e-03 1.00 3.315e-04 1.86 2.826e-04 1.98 3.293e-09
82433 5.312e-04 1.00 5.301e-04 1.00 3.029e-05 1.73 2.928e-05 1.64 3.004e-08
328705 1.329e-04 1.00 1.326e-04 1.00 3.320e-06 1.60 3.356e-06 1.57 2.800e-07
193 2.598e-01 2.609e-01 6.164e-01 6.926e-01 2.712e-06
705 6.387e-02 1.08 6.818e-02 1.04 1.577e-01 1.05 1.336e-01 1.27 7.470e-10
Union-Jack 2689 1.610e-02 1.03 1.854e-02 0.97 1.568e-02 1.72 1.327e-02 1.73 1.639e-10
10497 4.020e-03 1.02 4.767e-03 1.00 1.362e-03 1.79 1.370e-03 1.67 1.687e-09
41473 1.003e-03 1.01 1.201e-03 1.00 1.393e-04 1.66 1.580e-04 1.57 2.933e-08
164865 2.505e-04 1.01 3.008e-04 1.00 1.603e-05 1.57 1.918e-05 1.53 3.935e-07
[1]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5217-5226. doi: 10.3934/dcdsb.2020340

[2]

Patrick Henning, Mario Ohlberger. A-posteriori error estimate for a heterogeneous multiscale approximation of advection-diffusion problems with large expected drift. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1393-1420. doi: 10.3934/dcdss.2016056

[3]

Hatim Tayeq, Amal Bergam, Anouar El Harrak, Kenza Khomsi. Self-adaptive algorithm based on a posteriori analysis of the error applied to air quality forecasting using the finite volume method. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2557-2570. doi: 10.3934/dcdss.2020400

[4]

Lunji Song, Zhimin Zhang. Polynomial preserving recovery of an over-penalized symmetric interior penalty Galerkin method for elliptic problems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1405-1426. doi: 10.3934/dcdsb.2015.20.1405

[5]

A. Naga, Z. Zhang. The polynomial-preserving recovery for higher order finite element methods in 2D and 3D. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 769-798. doi: 10.3934/dcdsb.2005.5.769

[6]

Benedict Geihe, Martin Rumpf. A posteriori error estimates for sequential laminates in shape optimization. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1377-1392. doi: 10.3934/dcdss.2016055

[7]

Walter Allegretto, Yanping Lin, Ningning Yan. A posteriori error analysis for FEM of American options. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 957-978. doi: 10.3934/dcdsb.2006.6.957

[8]

Wenxiong Chen, Congming Li. A priori estimate for the Nirenberg problem. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 225-233. doi: 10.3934/dcdss.2008.1.225

[9]

Hengguang Li, Jeffrey S. Ovall. A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1377-1391. doi: 10.3934/dcdsb.2015.20.1377

[10]

M. González, J. Jansson, S. Korotov. A posteriori error analysis of a stabilized mixed FEM for convection-diffusion problems. Conference Publications, 2015, 2015 (special) : 525-532. doi: 10.3934/proc.2015.0525

[11]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[12]

Ana Cristina Barroso, José Matias. Necessary and sufficient conditions for existence of solutions of a variational problem involving the curl. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 97-114. doi: 10.3934/dcds.2005.12.97

[13]

Jeremiah Birrell. A posteriori error bounds for two point boundary value problems: A green's function approach. Journal of Computational Dynamics, 2015, 2 (2) : 143-164. doi: 10.3934/jcd.2015001

[14]

Svetlana Matculevich, Pekka Neittaanmäki, Sergey Repin. A posteriori error estimates for time-dependent reaction-diffusion problems based on the Payne--Weinberger inequality. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2659-2677. doi: 10.3934/dcds.2015.35.2659

[15]

Georg Vossen, Stefan Volkwein. Model reduction techniques with a-posteriori error analysis for linear-quadratic optimal control problems. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 465-485. doi: 10.3934/naco.2012.2.465

[16]

Anouar El Harrak, Hatim Tayeq, Amal Bergam. A posteriori error estimates for a finite volume scheme applied to a nonlinear reaction-diffusion equation in population dynamics. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2183-2197. doi: 10.3934/dcdss.2021062

[17]

Hsueh-Chen Lee, Hyesuk Lee. An a posteriori error estimator based on least-squares finite element solutions for viscoelastic fluid flows. Electronic Research Archive, 2021, 29 (4) : 2755-2770. doi: 10.3934/era.2021012

[18]

Quyen Tran, Harbir Antil, Hugo Díaz. Optimal control of parameterized stationary Maxwell's system: Reduced basis, convergence analysis, and a posteriori error estimates. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022003

[19]

Araz Hashemi, George Yin, Le Yi Wang. Sign-error adaptive filtering algorithms involving Markovian parameters. Mathematical Control and Related Fields, 2015, 5 (4) : 781-806. doi: 10.3934/mcrf.2015.5.781

[20]

Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control and Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (83)
  • HTML views (38)
  • Cited by (0)

Other articles
by authors

[Back to Top]