[1]
|
S. C. Brenner, J. Sun and L.-Y. Sung, Hodge decomposition methods for a quad-curl problem on planar domains, J. Sci. Comput., 73 (2017), 495-513.
doi: 10.1007/s10915-017-0449-0.
|
[2]
|
F. Cakoni and H. Haddar, A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media, Inverse Probl. Imaging, 1 (2007), 443-456.
doi: 10.3934/ipi.2007.1.443.
|
[3]
|
G. Chen, J. Cui and L. Xu, A hybridizable discontinuous Galerkin method for the quad-curl problem, J. Sci. Comput., 87 (2021), Paper No. 16, 23 pp.
doi: 10.1007/s10915-021-01420-3.
|
[4]
|
L. Chen, Ifem: An innovative finite element methods package in matlab, Preprint, University of Maryland.
|
[5]
|
L. Chen and J. Xu, A posteriori error estimator by post-processing, in Adaptive Computations: Theory and Algorithms (eds. T. Tang and J. Xu), no. 6 in Mathematics Monograph Series, Science Press, 2007, chapter 2, 34-67.
|
[6]
|
W. Dörfler, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal., 33 (1996), 1106-1124.
doi: 10.1137/0733054.
|
[7]
|
H. Guo, Z. Zhang, R. Zhao and Q. Zou, Polynomial preserving recovery on boundary, J. Comput. Appl. Math., 307 (2016), 119-133.
doi: 10.1016/j.cam.2016.03.003.
|
[8]
|
Q. Hong, J. Hu, S. Shu and J. Xu, A discontinuous Galerkin method for the fourth-order curl problem, J. Comput. Math., 30 (2012), 565-578.
doi: 10.4208/jcm.1206-m3572.
|
[9]
|
K. Hu, Q. Zhang and Z. Zhang, Simple curl-curl-conforming finite elements in two dimensions, SIAM J. Sci. Comput., 42 (2020), A3859–3877. (arXiv: 2004.12507v2, 2021)
doi: 10.1137/20M1333390.
|
[10]
|
P. Monk and J. Sun, Finite element methods for Maxwell's transmission eigenvalues, SIAM J. Sci. Comput., 34 (2012), B247–B264.
doi: 10.1137/110839990.
|
[11]
|
A. Naga and Z. Zhang, The polynomial-preserving recovery for higher order finite element methods in 2D and 3D, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 769-798.
doi: 10.3934/dcdsb.2005.5.769.
|
[12]
|
A. Naga and Z. Zhang, A posteriori error estimates based on the polynomial preserving recovery, SIAM J. Numer. Anal., 42 (2004), 1780-1800.
doi: 10.1137/S0036142903413002.
|
[13]
|
J. Sun, Iterative methods for transmission eigenvalues, SIAM J. Numer. Anal., 49 (2011), 1860-1874.
doi: 10.1137/100785478.
|
[14]
|
J. Sun, A mixed FEM for the quad-curl eigenvalue problem, Numer. Math., 132 (2016), 185-200.
doi: 10.1007/s00211-015-0708-7.
|
[15]
|
Z. Sun, F. Gao, C. Wang and Y. Zhang, A quadratic $C^0$ interior penalty method for the quad-curl problem, Math. Model. Anal., 25 (2020), 208-225.
doi: 10.3846/mma.2020.9796.
|
[16]
|
R. Verführt, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Teubner, Stuttgart., 1996.
|
[17]
|
L. Wang, Q. Zhang, J. Sun and Z. Zhang, A priori and a posteriori error estimates for the quad-curl eigenvalue problem, ESAIM Math. Model. Numer. Anal., 56 (2022), 1027-1051.
doi: 10.1051/m2an/2022027.
|
[18]
|
H. Wu and Z. Zhang, Can we have superconvergent gradient recovery under adaptive meshes?, SIAM J. Numer. Anal., 45 (2007), 1701-1722.
doi: 10.1137/060661430.
|
[19]
|
J. Xu and Z. Zhang, Analysis of recovery type a posteriori error estimators for mildly structured grids, Math. Comp., 73 (2004), 1139-1152.
doi: 10.1090/S0025-5718-03-01600-4.
|
[20]
|
Q. Zhang, L. Wang and Z. Zhang, $H$(curl$^2)$-conforming finite elements in 2 dimensions and applications to the quad-curl problem, SIAM J. Sci. Comput., 41 (2019), A1527–A1547.
doi: 10.1137/18M1199988.
|
[21]
|
Z. Zhang and A. Naga, A new finite element gradient recovery method: Superconvergence property, SIAM J. Sci. Comput., 26 (2005), 1192-1213.
doi: 10.1137/S1064827503402837.
|
[22]
|
B. Zheng, Q. Hu and J. Xu, A nonconforming finite element method for fourth order curl equations in $\mathbb R^3$, Math. Comp., 80 (2011), 1871-1886.
doi: 10.1090/S0025-5718-2011-02480-4.
|
[23]
|
O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Engrg., 24 (1987), 337-357.
doi: 10.1002/nme.1620240206.
|
[24]
|
O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. I. The recovery technique, Internat. J. Numer. Methods Engrg., 33 (1992), 1331-1364.
doi: 10.1002/nme.1620330702.
|
[25]
|
O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. II. Error estimates and adaptivity, Internat. J. Numer. Methods Engrg., 33 (1992), 1365-1382.
doi: 10.1002/nme.1620330703.
|