doi: 10.3934/dcdsb.2022128
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Diffusive size-structured population model with time-varying diffusion rate

School of Basic Sciences, Indian Institute of Technology Mandi, Kamand (H.P.) - 175005, India

* Corresponding author: Syed Abbas

Received  December 2021 Revised  May 2022 Early access July 2022

This work is devoted to the study of a size-structured population model with a time-varying diffusion rate. Due to the seasonal variation, it is natural to consider the time-varying diffusion rate. Moreover, introducing the time-varying diffusion rate makes the model more challenging and requires the results of evolution operators for the analysis. Under some assumptions on the time-dependent diffusion coefficient, the existence and uniqueness of mild solution is shown. We apply the method of characteristics and evolution operators to derive our results. Positivity and boundedness of mild solution is also shown. Some examples are provided to illustrate the theoretical findings. We also solve our model numerically to study the size and spatial dynamics of population density.

Citation: Manoj Kumar, Syed Abbas. Diffusive size-structured population model with time-varying diffusion rate. Discrete and Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2022128
References:
[1]

B. P. Ayati and T. F. Dupont, Galerkin methods in age and space for a population model with nonlinear diffusion, SIAM J. Num. Anal., 40 (2002), 1064-1076.  doi: 10.1137/S0036142900379679.

[2]

G. I. Bell and E. C. Anderson, Cell growth and division. I. A mathematical model with applications to cell volume distributions in mammalian suspension cultures, Biophys. J., 7 (1967), 329-351. 

[3]

S. BentoutA. TridaneS. Djilali and T. M. Touaoula, Age-structured modeling of COVID-19 epidemic in the USA, UAE and Algeria, Alexandria Eng. J., 60 (2021), 401-411. 

[4]

A. Calsina and J. Saldana, A model of physiologically structured population dynamics with a nonlinear individual growth rate, J. Math. Biol., 33 (1995), 335-364.  doi: 10.1007/BF00176377.

[5]

C. Cusulin and L. Gerardo-Giorda, A numerical method for spatial diffusion in age-structured populations, Numer. Methods Partial Differential Equations, 26 (2010), 253-273.  doi: 10.1002/num.20425.

[6]

E. B. Davies, One-Parameter Semigroups, volume 15 of London Mathematical Society Monographs. Academic Press, Inc., London-New York, 1980.

[7]

A. Ducrot, Travelling waves for a size and space structured model in population dynamics: Point to sustained oscillating solution connections, J. Differential Equations, 250 (2011), 410-449.  doi: 10.1016/j.jde.2010.09.019.

[8]

J. Z. Farkas, Stability conditions for a non-linear size-structured model, Nonlinear Anal. Real World Appl., 6 (2005), 962-969.  doi: 10.1016/j.nonrwa.2004.06.002.

[9]

X. Fu and D. Zhu, Stability results for a size-structured population model with delayed birth process, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 109-131.  doi: 10.3934/dcdsb.2013.18.109.

[10]

J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1985.

[11]

M. E. Gurtin and R. C. MacCamy, Non-linear age-dependent population dynamics, Arch. Rational Mech. Anal., 54 (1974), 281-300.  doi: 10.1007/BF00250793.

[12]

K. P. Hadeler, Structured populations with diffusion in state space, Math. Biosci. Eng., 7 (2010), 37-49.  doi: 10.3934/mbe.2010.7.37.

[13]

N. Kato, Abstract linear partial differential equations related to size-structured population models with diffusion, J. Math. Anal. Appl., 436 (2016), 890-910.  doi: 10.1016/j.jmaa.2015.11.077.

[14]

M. Kumar and S. Abbas, Age-structured SIR model for the spread of infectious diseases through indirect contacts, Mediterr. J. Math., 19 (2022), Paper No. 14, 18 pp. doi: 10.1007/s00009-021-01925-z.

[15]

M. Langlais, Large time behavior in a nonlinear age-dependent population dynamics problem with spatial diffusion, J. Math. Biol., 26 (1988), 319-346.  doi: 10.1007/BF00277394.

[16]

Y. Liu and Z.-R. He, On the well-posedness of a nonlinear hierarchical size-structured population model, ANZIAM J., 58 (2017), 482-490. doi: 10.1017/S1446181117000025.

[17]

F. A. Milner, A numerical method for a model of population dynamics with spatial diffusion, Comp. Math Appl., 19 (1990), 31-43.  doi: 10.1016/0898-1221(90)90135-7.

[18]

A. G. M'Kendrick, Applications of mathematics to medical problems, Proc. Edinb. Math. Soc., 44 (1925), 98-130. 

[19]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 44 of Applied Mathematical Sciences. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[20]

F. R. Sharpe and A. J. Lotka, A problem in age-distribution, Philos. Mag., 21 (1911), 435-438. 

[21]

J. W. Sinko and W. Streifer, A new model for age-size structure of a population, Ecology, 48 (1967), 910-918. 

[22]

G. F. Webb, Population models structured by age, size, and spatial position, In Structured Population Models in Biology and Epidemiology, volume 1936 of Lecture Notes in Math., Springer, Berlin, (2008), 1–49. doi: 10.1007/978-3-540-78273-5_1.

[23]

Y. Weitsman, Diffusion with time-varying diffusivity, with application to moisture-sorption in composites, J. Comp. Mat., 10 (1976), 193-204. 

show all references

References:
[1]

B. P. Ayati and T. F. Dupont, Galerkin methods in age and space for a population model with nonlinear diffusion, SIAM J. Num. Anal., 40 (2002), 1064-1076.  doi: 10.1137/S0036142900379679.

[2]

G. I. Bell and E. C. Anderson, Cell growth and division. I. A mathematical model with applications to cell volume distributions in mammalian suspension cultures, Biophys. J., 7 (1967), 329-351. 

[3]

S. BentoutA. TridaneS. Djilali and T. M. Touaoula, Age-structured modeling of COVID-19 epidemic in the USA, UAE and Algeria, Alexandria Eng. J., 60 (2021), 401-411. 

[4]

A. Calsina and J. Saldana, A model of physiologically structured population dynamics with a nonlinear individual growth rate, J. Math. Biol., 33 (1995), 335-364.  doi: 10.1007/BF00176377.

[5]

C. Cusulin and L. Gerardo-Giorda, A numerical method for spatial diffusion in age-structured populations, Numer. Methods Partial Differential Equations, 26 (2010), 253-273.  doi: 10.1002/num.20425.

[6]

E. B. Davies, One-Parameter Semigroups, volume 15 of London Mathematical Society Monographs. Academic Press, Inc., London-New York, 1980.

[7]

A. Ducrot, Travelling waves for a size and space structured model in population dynamics: Point to sustained oscillating solution connections, J. Differential Equations, 250 (2011), 410-449.  doi: 10.1016/j.jde.2010.09.019.

[8]

J. Z. Farkas, Stability conditions for a non-linear size-structured model, Nonlinear Anal. Real World Appl., 6 (2005), 962-969.  doi: 10.1016/j.nonrwa.2004.06.002.

[9]

X. Fu and D. Zhu, Stability results for a size-structured population model with delayed birth process, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 109-131.  doi: 10.3934/dcdsb.2013.18.109.

[10]

J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1985.

[11]

M. E. Gurtin and R. C. MacCamy, Non-linear age-dependent population dynamics, Arch. Rational Mech. Anal., 54 (1974), 281-300.  doi: 10.1007/BF00250793.

[12]

K. P. Hadeler, Structured populations with diffusion in state space, Math. Biosci. Eng., 7 (2010), 37-49.  doi: 10.3934/mbe.2010.7.37.

[13]

N. Kato, Abstract linear partial differential equations related to size-structured population models with diffusion, J. Math. Anal. Appl., 436 (2016), 890-910.  doi: 10.1016/j.jmaa.2015.11.077.

[14]

M. Kumar and S. Abbas, Age-structured SIR model for the spread of infectious diseases through indirect contacts, Mediterr. J. Math., 19 (2022), Paper No. 14, 18 pp. doi: 10.1007/s00009-021-01925-z.

[15]

M. Langlais, Large time behavior in a nonlinear age-dependent population dynamics problem with spatial diffusion, J. Math. Biol., 26 (1988), 319-346.  doi: 10.1007/BF00277394.

[16]

Y. Liu and Z.-R. He, On the well-posedness of a nonlinear hierarchical size-structured population model, ANZIAM J., 58 (2017), 482-490. doi: 10.1017/S1446181117000025.

[17]

F. A. Milner, A numerical method for a model of population dynamics with spatial diffusion, Comp. Math Appl., 19 (1990), 31-43.  doi: 10.1016/0898-1221(90)90135-7.

[18]

A. G. M'Kendrick, Applications of mathematics to medical problems, Proc. Edinb. Math. Soc., 44 (1925), 98-130. 

[19]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 44 of Applied Mathematical Sciences. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[20]

F. R. Sharpe and A. J. Lotka, A problem in age-distribution, Philos. Mag., 21 (1911), 435-438. 

[21]

J. W. Sinko and W. Streifer, A new model for age-size structure of a population, Ecology, 48 (1967), 910-918. 

[22]

G. F. Webb, Population models structured by age, size, and spatial position, In Structured Population Models in Biology and Epidemiology, volume 1936 of Lecture Notes in Math., Springer, Berlin, (2008), 1–49. doi: 10.1007/978-3-540-78273-5_1.

[23]

Y. Weitsman, Diffusion with time-varying diffusivity, with application to moisture-sorption in composites, J. Comp. Mat., 10 (1976), 193-204. 

Figure 1.  Figure shows the behaviour of diffusion coefficient for different values of $ \alpha $
Figure 2.  Diffusion coefficient for different values of $ b $
Figure 3.  Figure depicts size-space profile of population density at fixed time $ t = 0 $
Figure 4.  Size-space profile of population density at fixed time $ t = 0.4 $
Figure 5.  Dynamics of population at fixed time $ t = 0.8 $
Figure 6.  Size-space profile of population density at fixed time $ t = 1 $
Figure 7.  Size-space evolution of population at fixed time $ t = 0 $
Figure 8.  Evolution of population at fixed time $ t = 0.4 $
Figure 9.  Dynamics of population at fixed time $ t = 0.8 $
Figure 10.  Size-space evolution of population at fixed time $ t = 1 $
Figure 11.  Evolution of population at fixed spatial position $ x = 1 $
Figure 12.  Dynamics of population at fixed spatial position $ x = 2 $
[1]

Paul Deuring. Spatial asymptotics of mild solutions to the time-dependent Oseen system. Communications on Pure and Applied Analysis, 2021, 20 (5) : 1833-1849. doi: 10.3934/cpaa.2021044

[2]

Ihab Haidar, Alain Rapaport, Frédéric Gérard. Effects of spatial structure and diffusion on the performances of the chemostat. Mathematical Biosciences & Engineering, 2011, 8 (4) : 953-971. doi: 10.3934/mbe.2011.8.953

[3]

Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1497-1510. doi: 10.3934/dcdsb.2021099

[4]

Alessandro Bertuzzi, Alberto d'Onofrio, Antonio Fasano, Alberto Gandolfi. Modelling cell populations with spatial structure: Steady state and treatment-induced evolution. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 161-186. doi: 10.3934/dcdsb.2004.4.161

[5]

J. J. P. Veerman, B. D. Stošić, A. Olvera. Spatial instabilities and size limitations of flocks. Networks and Heterogeneous Media, 2007, 2 (4) : 647-660. doi: 10.3934/nhm.2007.2.647

[6]

Shuling Yan, Shangjiang Guo. Dynamics of a Lotka-Volterra competition-diffusion model with stage structure and spatial heterogeneity. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1559-1579. doi: 10.3934/dcdsb.2018059

[7]

Nicolas Hegoburu, Marius Tucsnak. Null controllability of the Lotka-McKendrick system with spatial diffusion. Mathematical Control and Related Fields, 2018, 8 (3&4) : 707-720. doi: 10.3934/mcrf.2018030

[8]

Jing Li, Gui-Quan Sun, Zhen Jin. Interactions of time delay and spatial diffusion induce the periodic oscillation of the vegetation system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2147-2172. doi: 10.3934/dcdsb.2021127

[9]

Hélène Leman, Sylvie Méléard, Sepideh Mirrahimi. Influence of a spatial structure on the long time behavior of a competitive Lotka-Volterra type system. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 469-493. doi: 10.3934/dcdsb.2015.20.469

[10]

Fabio Augusto Milner, Ruijun Zhao. A deterministic model of schistosomiasis with spatial structure. Mathematical Biosciences & Engineering, 2008, 5 (3) : 505-522. doi: 10.3934/mbe.2008.5.505

[11]

José-Francisco Rodrigues, João Lita da Silva. On a unilateral reaction-diffusion system and a nonlocal evolution obstacle problem. Communications on Pure and Applied Analysis, 2004, 3 (1) : 85-95. doi: 10.3934/cpaa.2004.3.85

[12]

Xiao Wu, Mingkang Ni. Solution of contrast structure type for a reaction-diffusion equation with discontinuous reactive term. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3249-3266. doi: 10.3934/dcdss.2020341

[13]

Hideo Deguchi. A reaction-diffusion system arising in game theory: existence of solutions and spatial dominance. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3891-3901. doi: 10.3934/dcdsb.2017200

[14]

Sebastian Aniţa, William Edward Fitzgibbon, Michel Langlais. Global existence and internal stabilization for a reaction-diffusion system posed on non coincident spatial domains. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 805-822. doi: 10.3934/dcdsb.2009.11.805

[15]

Aleksa Srdanov, Radiša Stefanović, Aleksandra Janković, Dragan Milovanović. "Reducing the number of dimensions of the possible solution space" as a method for finding the exact solution of a system with a large number of unknowns. Mathematical Foundations of Computing, 2019, 2 (2) : 83-93. doi: 10.3934/mfc.2019007

[16]

Marita Thomas. Quasistatic damage evolution with spatial $\mathrm{BV}$-regularization. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 235-255. doi: 10.3934/dcdss.2013.6.235

[17]

Philippe Laurençot, Christoph Walker. The fragmentation equation with size diffusion: Small and large size behavior of stationary solutions. Kinetic and Related Models, 2021, 14 (6) : 961-980. doi: 10.3934/krm.2021032

[18]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[19]

Qiao Liu, Shangbin Cui. Regularizing rate estimates for mild solutions of the incompressible Magneto-hydrodynamic system. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1643-1660. doi: 10.3934/cpaa.2012.11.1643

[20]

Yukio Kan-On. Structure on the set of radially symmetric positive stationary solutions for a competition-diffusion system. Conference Publications, 2013, 2013 (special) : 427-436. doi: 10.3934/proc.2013.2013.427

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (144)
  • HTML views (64)
  • Cited by (0)

Other articles
by authors

[Back to Top]