This paper delves into the dynamics of a spatial eco-epidemiological system with disease spread within the predator population in open advective environments. The disease-free subsystem is first discussed, and the net reproductive rate $ R_P $ is established to determine whether the predator can invade successfully. The impacts of advection rate on $ R_P $ are also discussed. Then for the scenario of successful invasion of the predator, sufficient conditions for the prevalence of disease and the local stability of disease-free attractor are obtained by dint of persistence theory and comparison theorem. Finally, we present a special numerical example, in which the basic reproduction ratio $ R_0 $ of the disease is established in the absence or presence of periodic perturbation. Our theoretical and numerical results both indicate that the advection rate in an intermediate interval can favor the coexistence of prey and healthy predator as well as the eradication of disease.
Citation: |
[1] |
M. Ballyk, L. Dung, D. A. Jones and H. L. Smith, Effects of random motility on microbial growth and competition in a flow reactor, SIAM J. Appl. Math., 59 (1999), 573-596.
doi: 10.1137/S0036139997325345.![]() ![]() ![]() |
[2] |
A.-M. Bate and F. M. Hilker, Predator–prey oscillations can shift when diseases become endemic, J. Theor. Biol., 316 (2013), 1-8.
doi: 10.1016/j.jtbi.2012.09.013.![]() ![]() ![]() |
[3] |
S. J. Bjork and J. L. Bartholomew, The effects of water velocity on the Ceratomyxa shasta infectious cycle, J. Fish Dis., 32 (2009), 131-142.
doi: 10.1111/j.1365-2761.2008.00964.x.![]() ![]() |
[4] |
L. R. Bodensteiner, R. J. Sheehan, P. S. Wills, A. M. Brandenburg and W. M. Lewis, Flowing water: An effective treatment for I chthyophthiriasis, J. Aquat. Anim. Health, 12 (2000), 209-219.
doi: 10.1577/1548-8667(2000)012<0209:FWAETF>2.0.CO;2.![]() ![]() |
[5] |
I. M. Bulai and F. M. Hilker, Eco-epidemiological interactions with predator interference and infection, Theor. Popul. Biol., 130 (2019), 191-202.
doi: 10.1016/j.tpb.2019.07.016.![]() ![]() |
[6] |
R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations, John Wiley & Sons, 2003.
doi: 10.1002/0470871296.![]() ![]() ![]() |
[7] |
L. Carraro, L. Mari, M. Gatto, A. Rinaldo and E. Bertuzzo, Spread of proliferative K idney disease in fish along stream networks: A spatial metacommunity framework, Freshw. Biol., 63 (2018), 114-127.
doi: 10.1111/fwb.12939.![]() ![]() |
[8] |
J. Chattopadhyay and O. Arino, A predator-prey model with disease in the prey, Nonlinear Anal., 36 (1999), 747-766.
doi: 10.1016/S0362-546X(98)00126-6.![]() ![]() ![]() |
[9] |
M.-G. Crandall and P.-H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Ration. Mech. Anal., 52 (1973), 161-180.
doi: 10.1007/BF00282325.![]() ![]() ![]() |
[10] |
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.
doi: 10.1007/BF00178324.![]() ![]() ![]() |
[11] |
T. Dondè, Uniform persistence in a prey–predator model with a diseased predator, J. Math. Biol., 80 (2020), 1077-1093.
doi: 10.1007/s00285-019-01451-3.![]() ![]() ![]() |
[12] |
L. Dung, Dissipativity and global attractors for a class of quasilinear parabolic systems, Commun. Partial. Differ. Equ., 22 (1997), 413-433.
doi: 10.1080/03605309708821269.![]() ![]() ![]() |
[13] |
S. J. Guo and J. H. Wu, Bifurcation Theory of Functional Differential Equations, vol. 10, Springer, 2013.
doi: 10.1007/978-1-4614-6992-6.![]() ![]() |
[14] |
K. P. Hadeler and H. I. Freedman, Predator-prey populations with parasitic infection, J. Math. Biol., 27 (1989), 609-631.
doi: 10.1007/BF00276947.![]() ![]() ![]() |
[15] |
H. W. Hethcote, W. D. Wang, L. T. Han and Z. E. Ma, A predator–prey model with infected prey, Theor. Popul. Biol., 66 (2004), 259-268.
doi: 10.1016/j.tpb.2004.06.010.![]() ![]() |
[16] |
F. M. Hilker and M. A. Lewis, Predator–prey systems in streams and rivers, Theor. Ecol., 3 (2010), 175-193.
doi: 10.1007/s12080-009-0062-4.![]() ![]() |
[17] |
F. M. Hilker and K. Schmitz, Disease-induced stabilization of predator–prey oscillations, J. Theor. Biol., 255 (2008), 299-306.
doi: 10.1016/j.jtbi.2008.08.018.![]() ![]() ![]() |
[18] |
Y.-H. Hsieh and C.-K. Hsiao, Predator–prey model with disease infection in both populations, Math. Med. Biol., 25 (2008), 247-266.
doi: 10.1093/imammb/dqn017.![]() ![]() |
[19] |
S.-B. Hsu and Y. Lou, Single phytoplankton species growth with light and advection in a water column, SIAM J. Appl. Math., 70 (2010), 2942-2974.
doi: 10.1137/100782358.![]() ![]() ![]() |
[20] |
Q. H. Huang, H. Wang and M. A. Lewis, A hybrid continuous/discrete-time model for invasion dynamics of zebra mussels in rivers, SIAM J. Appl. Math., 77 (2017), 854-880.
doi: 10.1137/16M1057826.![]() ![]() ![]() |
[21] |
D. H. Jiang, H. Nie and J. H. Wu, Crowding effects on coexistence solutions in the unstirred chemostat, Appl. Anal., 96 (2017), 1016-1046.
doi: 10.1080/00036811.2016.1171319.![]() ![]() ![]() |
[22] |
B. W. Kooi and E. Venturino, Ecoepidemic predator–prey model with feeding satiation, prey herd behavior and abandoned infected prey, Math. Biosci., 274 (2016), 58-72.
doi: 10.1016/j.mbs.2016.02.003.![]() ![]() ![]() |
[23] |
M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspekhi Mat. Nauk (N.S.), 3 (1948), 3-95.
![]() ![]() |
[24] |
Y. Lou and F. Lutscher, Evolution of dispersal in open advective environments, J. Math. Biol., 69 (2014), 1319-1342.
doi: 10.1007/s00285-013-0730-2.![]() ![]() ![]() |
[25] |
Y. Lou, H. Nie and Y. Wang, Coexistence and bistability of a competition model in open advective environments, Math. Biosci., 306 (2018), 10-19.
doi: 10.1016/j.mbs.2018.09.013.![]() ![]() ![]() |
[26] |
Y. Lou, D. M. Xiao and P. Zhou, Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment, Discrete Continuous Dyn. Syst. Ser. B, 36 (2016), 953-969.
doi: 10.3934/dcds.2016.36.953.![]() ![]() ![]() |
[27] |
Y. Lou and P. Zhou, Evolution of dispersal in advective homogeneous environment: The effect of boundary conditions, J. Differential Equations, 259 (2015), 141-171.
doi: 10.1016/j.jde.2015.02.004.![]() ![]() ![]() |
[28] |
P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275.
doi: 10.1137/S0036141003439173.![]() ![]() ![]() |
[29] |
A. P. Maiti, C. Jana and D. K. Maiti, A delayed eco-epidemiological model with nonlinear incidence rate and Crowley–Martin functional response for infected prey and predator, Nonlinear Dyn., 98 (2019), 1137-1167.
doi: 10.1007/s11071-019-05253-6.![]() ![]() |
[30] |
R. H. Martin and H. L. Smith, Abstract functional-differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.
doi: 10.1090/S0002-9947-1990-0967316-X.![]() ![]() ![]() |
[31] |
H. W. Mckenzie, Y. Jin, J. Jacobsen and M. A. Lewis, $R_0$ analysis of a spatiotemporal model for a stream population, SIAM J. Appl. Dyn. Syst., 11 (2012), 567-596.
doi: 10.1137/100802189.![]() ![]() ![]() |
[32] |
H. Nie, C. R. Liu and Z. G. Wang, Global dynamics of an ecosystem in open advective environments, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 31 (2021), Paper No. 2150087, 24 pp.
doi: 10.1142/S0218127421500875.![]() ![]() ![]() |
[33] |
H. Nie, B. Wang and J. H. Wu, Invasion analysis on a predator–prey system in open advective environments, J. Math. Biol., 81 (2020), 1429-1463.
doi: 10.1007/s00285-020-01545-3.![]() ![]() ![]() |
[34] |
J. A. Patz, P. Daszak, G. M. Tabor, A. A. Aguirre, M. Pearl, J. Epstein, N. D. Wolfe, A. M. Kilpatrick, J. Foufopoulos, D. Molyneux et al., Unhealthy landscapes: Policy recommendations on land use change and infectious disease emergence, Environ. Health Perspect., 112 (2004), 1092–1098.
doi: 10.1289/ehp.6877.![]() ![]() |
[35] |
L.-E. Polvi, L. Lind, H. Persson, A. Miranda-Melo, F. Pilotto, X. L. Su and C. Nilsson, Facets and scales in river restoration: N estedness and interdependence of hydrological, geomorphic, ecological, and biogeochemical processes, J. Environ. Manage., 265 (2020), 110288.
doi: 10.1016/j.jenvman.2020.110288.![]() ![]() |
[36] |
V. Schakau, F. M. Hilker and M. A. Lewis, Fish disease dynamics in changing rivers: Salmonid Ceratomyxosis in the Klamath River, Ecol. Complex., 40 (2019), 100776.
doi: 10.1016/j.ecocom.2019.100776.![]() ![]() |
[37] |
Y. Shao, J. B. Wang and P. Zhou, On a second order eigenvalue problem and its application, J. Differential Equations, 327 (2022), 189-211.
doi: 10.1016/j.jde.2022.04.030.![]() ![]() ![]() |
[38] |
J. P. Shi and X. F. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differential Equations, 246 (2009), 2788-2812.
doi: 10.1016/j.jde.2008.09.009.![]() ![]() ![]() |
[39] |
D.-C. Speirs and W.-S. Gurney, Population persistence in rivers and estuaries, Ecology, 82 (2001), 1219-1237.
![]() |
[40] |
M. Su and C. Hui, An eco-epidemiological system with infected predator, in 2010 3rd International Conference on Biomedical Engineering and Informatics, vol. 6, 2010
doi: 10.1109/BMEI.2010.5639698.![]() ![]() |
[41] |
D. Tang and Y. M. Chen, Global dynamics of a Lotka–Volterra competition-diffusion system in advective heterogeneous environments, SIAM J. Appl. Dyn. Syst., 20 (2021), 1232-1252.
doi: 10.1137/20M1372639.![]() ![]() |
[42] |
H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.
doi: 10.1007/BF00173267.![]() ![]() ![]() |
[43] |
G. Timmerhaus, C. C. Lazado, N. A. R. Cabillon, B. K. M. Reiten and L. H. Johansen, The optimum velocity for Atlantic salmon post-smolts in RAS is a compromise between muscle growth and fish welfare, Aquaculture, 532 (2021), 736076.
doi: 10.1016/j.aquaculture.2020.736076.![]() ![]() |
[44] |
O. Vasilyeva and F. Lutscher, How flow speed alters competitive outcome in advective environments, Bull. Math. Biol., 74 (2012), 2935-2958.
doi: 10.1007/s11538-012-9792-3.![]() ![]() ![]() |
[45] |
J. F. Wang and H. Nie, Invasion dynamics of a predator-prey system in closed advective environments, J. Differential Equations, 318 (2022), 298-322.
doi: 10.1016/j.jde.2022.02.043.![]() ![]() ![]() |
[46] |
X. Y. Wang, R. W. Wu and X.-Q. Zhao, A reaction-advection-diffusion model of cholera epidemics with seasonality and human behavior change, J. Math. Biol., 84 (2022), Paper No. 34, 30 pp.
doi: 10.1007/s00285-022-01733-3.![]() ![]() ![]() |
[47] |
Y. N. Xiao and L. S. Chen, Modeling and analysis of a predator–prey model with disease in the prey, Math. Biosci., 171 (2001), 59-82.
doi: 10.1016/S0025-5564(01)00049-9.![]() ![]() ![]() |
[48] |
X. Yan, H. Nie and P. Zhou, On a competition-diffusion-advection system from river ecology: Mathematical analysis and numerical study, SIAM J. Appl. Dyn. Syst., 21 (2022), 438-469.
doi: 10.1137/20M1387924.![]() ![]() ![]() |
[49] |
T. H. Yang and L. Zhang, Remarks on basic reproduction ratios for periodic abstract functional differential equations, Discrete Continuous Dyn. Syst. Ser. B, 24 (2019), 6771-6782.
doi: 10.3934/dcdsb.2019166.![]() ![]() ![]() |
[50] |
J. M, Zh ang, J. P. Shi and X. Y. Chang, A mathematical model of algae growth in a pelagic-benthic coupled shallow aquatic ecosystem, J. Math. Biol., 76 (2018), 1159-1193.
doi: 10.1007/s00285-017-1168-8.![]() ![]() |
[51] |
J.-F. Zhang, W.-T. Li and X.-P. Yan, Hopf bifurcation and stability of periodic solutions in a delayed eco-epidemiological system, Appl. Math. Comput., 198 (2008), 865-876.
doi: 10.1016/j.amc.2007.09.045.![]() ![]() |
[52] |
L. Zhang, W.-X. Shi and S.-M. Wang, A nonlocal and time-delayed reaction–diffusion eco-epidemiological predator–prey model, Comput. Math. Appl., 77 (2019), 2534-2552.
doi: 10.1016/j.camwa.2018.12.034.![]() ![]() ![]() |
[53] |
X.-Q. Zhao, Dynamical Systems in Population Biology, 2ed edition, Springer, Cham, 2017.
doi: 10.1007/978-3-319-56433-3.![]() ![]() ![]() |
[54] |
P. Zhou and Q. H. Huang, A spatiotemporal model for the effects of toxicants on populations in a polluted river, SIAM J. Appl. Math., 82 (2022), 95-118.
doi: 10.1137/21M1405629.![]() ![]() ![]() |
The temporal-spatial evolution of system (1) with
The temporal-spatial evolution of system (1) with
Bifurcation diagram about
The temporal-spatial evolution of system (1) with
The temporal-spatial evolution of system (1) with
Bifurcation diagram about
Bifurcation diagram of