In this paper, we consider a class of quadratic switching Liénard systems with three switching lines. We give an algorithm for computing the Lyapunov constants of this system. Based on this method, we obtain a center condition and three limit cycles bifurcating from the focus $ (0,0) $. Further, an example of quadratic switching systems is constructed to show the existence of six limit cycles bifurcating from the center. This is a new low bound on the maximal number of small-amplitude limit cycles obtained in such quadratic switching systems.
Citation: |
[1] |
A. A. Andronov, A. A. Vitt and S. E. Khaikin, Theory of Oscillators: International Series in Physics, Elsevier, London, 2013.
![]() |
[2] |
L. Chen and M. Wang, The relative position and the number of limit cycles of a quadratic differential systems, Acta Math. Sinica, 22 (1979), 751-758.
![]() ![]() |
[3] |
X. Chen and Z. Du, Limit cycles bifurcate from centers of discontinuous quadratic systems, Comput. Math. Appl., 59 (2010), 3836-3848.
doi: 10.1016/j.camwa.2010.04.019.![]() ![]() ![]() |
[4] |
B. Coll, A. Gasull and R. Prohens, Degenerate Hopf bifurcation in discontinuous planar systems, J. Math. Anal. Appl., 253 (2001), 671-690.
doi: 10.1006/jmaa.2000.7188.![]() ![]() ![]() |
[5] |
B. Coll, R. Prohens and A. Gasull, The center problem for discontinuous Liénard differential equation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9 (1999), 1751-1761.
doi: 10.1142/S0218127499001231.![]() ![]() ![]() |
[6] |
L. P. C. da Cruz, D. D. Novaes and J. Torregrosa, New lower bound for the Hilbert number in piecewise quadratic differential systems, J. Differ. Equ., 266 (2019), 4170-4203.
doi: 10.1016/j.jde.2018.09.032.![]() ![]() ![]() |
[7] |
A. F. Filippov, Differential Equation with Discontinuous Right-Hand Sides, Kluwer Academic, Amsterdam, 1988.
doi: 10.1007/978-94-015-7793-9.![]() ![]() ![]() |
[8] |
A. Gasull and J. Torregrosa, Center-focus problem for discontinuous planar differential equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg, 13 (2003), 1755-1765.
doi: 10.1142/S0218127403007618.![]() ![]() ![]() |
[9] |
L. F. S. Gouveia and J. Torregrosa, 24 crossing limit cycles in only one nest for piecewise cubic systems, Appl. Math. Lett., 103 (2020), 106189, 6 pp.
doi: 10.1016/j.aml.2019.106189.![]() ![]() ![]() |
[10] |
L. Guo, P. Yu and Y. Chen, Bifurcation analysis on a class of $Z_2$-equivariant cubic switching systems showing eighteen limit cycles, J. Diff. Eqns., 266 (2019), 1221-1244.
doi: 10.1016/j.jde.2018.07.071.![]() ![]() ![]() |
[11] |
M. Han and W. Zhang, On Hopf bifurcation in non-smooth planar system, J. Differ. Equ., 248 (2010), 2399-2416.
doi: 10.1016/j.jde.2009.10.002.![]() ![]() ![]() |
[12] |
M. Kunze, Non-Smooth Dynamical Systems, Springer-Verlag, Berlin, 2000.
doi: 10.1007/BFb0103843.![]() ![]() ![]() |
[13] |
F. Li and P. Yu, A note on the paper "Center and isochronous center conditions for switching systems associated with elementary singular points", Commun. Nonlinear Sci. Numer. Simul., 90 (2020), 105405, 9 pp.
doi: 10.1016/j.cnsns.2020.105405.![]() ![]() ![]() |
[14] |
S. Shi, A concrete example of the existence of four limit cycles for plane quadratic systems, Sci. Sinica, 23 (1980), 153-158.
![]() ![]() |
[15] |
Y. Tian and P. Yu, Center conditions in a switching Bantin system, J. Diff. Eqns., 259 (2015), 1203-1226.
doi: 10.1016/j.jde.2015.02.044.![]() ![]() ![]() |
[16] |
Y. Wang, M. Han and D. Constantinescu, On the limit cycles of perturbed discontinuous planar systems with 4 switching lines, Chaos Solitons Fractals, 83 (2016), 158-177.
doi: 10.1016/j.chaos.2015.11.041.![]() ![]() ![]() |
[17] |
Y. Wu, L. Guo and Y. Chen, Hopf bifurcation of $Z_2$-equivariant generalized Liénard systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 28 (2018), 1850069, 12 pp.
doi: 10.1142/S0218127418500694.![]() ![]() ![]() |
[18] |
P. Yu, M. Han and X. Zhang, Eighteen limit cycles around two symmetric foci in a cubic planar switching polynomial system, J. Differ. Equ., 275 (2021), 939-959.
doi: 10.1016/j.jde.2020.11.001.![]() ![]() ![]() |
Diagram