doi: 10.3934/dcdsb.2022148
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Bistable traveling waves in a delayed competitive system

1. 

School of Science, Lanzhou University of Technology, Lanzhou, Gansu 730050, China

2. 

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China

*Corresponding author: Shuxia Pan

Received  January 2022 Revised  June 2022 Early access July 2022

Fund Project: The first author is supported by NSF of China grant 11971213

This paper is concerned with the existence, uniqueness and asymptotic stability of traveling wave solutions in a delayed competitive system with spatial diffusion. When the interspecific competition is strong, the corresponding functional differential system has two stable and two unstable steady states. Firstly, we establish the existence of bistable traveling wave solutions by the theory of monotone semiflows. With the help of squeezing technique based on comparison principle, the asymptotic stability of traveling wave solutions is proved, which further implies the uniqueness of wave speed and wave profile in the sense of phase shift.

Citation: Shuxia Pan, Shengnan Hao. Bistable traveling waves in a delayed competitive system. Discrete and Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2022148
References:
[1]

M. AlfaroA. Ducrot and T. Giletti, Travelling waves for a non-monotone bistable equation with delay: Existence and oscillations, Proc. Lond. Math. Soc., 116 (2018), 729-759.  doi: 10.1112/plms.12092.

[2]

P. W. BatesP. C. FifeX. Ren and X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138 (1997), 105-136.  doi: 10.1007/s002050050037.

[3]

W.-J. BoG. Lin and S. Ruan, Traveling wave solutions for time periodic reaction-diffusion systems, Discrete Contin. Dyn. Syst., 38 (2018), 4329-4351.  doi: 10.3934/dcds.2018189.

[4]

X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160. 

[5]

J. Fang and X.-Q. Zhao, Bistable traveling waves for monotone semiflows with application, J. Eur. Math. Soc., 17 (2015), 2243-2288.  doi: 10.4171/JEMS/556.

[6]

P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Rational Mech. Anal., 65 (1977), 335-361.  doi: 10.1007/BF00250432.

[7]

K. Li and X. Li, Existence and stability of bistable wavefronts in a nonlocal delayed reaction-diffusion epidemic system, European J. Appl. Math., 32 (2021), 146-176.  doi: 10.1017/s0956792520000078.

[8]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1-40.  doi: 10.1002/cpa.20154.

[9]

G. Lin and W.-T. Li, Bistable wavefronts in a diffusive and competitive Lotka-Volterra type system with nonlocal delays, J. Differential Equations, 244 (2008), 487-513.  doi: 10.1016/j.jde.2007.10.019.

[10]

S. Ma and J. Wu, Existence, uniqueness and asymptotic stability of traveling wavefronts in a non-local delayed diffusion equation, J. Dynam. Differential Equations, 19 (2007), 391-436.  doi: 10.1007/s10884-006-9065-7.

[11]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science, 197 (1977), 287-289.  doi: 10.1126/science.267326.

[12]

R. H. Martin and H. L. Smith, Abstract functional-differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.  doi: 10.2307/2001590.

[13]

A. Ruiz-Herrera, Delay reaction-diffusion systems via discrete dynamics, SIAM J. Math. Anal., 52 (2020), 6297-6312.  doi: 10.1137/19M1304477.

[14]

K. W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional-differential equations, Trans. Amer. Math. Soc., 302 (1987), 587-615.  doi: 10.2307/2000859.

[15]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, AMS, Providence, RI, 1995.

[16]

H. L. Smith and X.-Q. Zhao, Global asymptotic stability of traveling waves in delayed reaction-diffusion equations, SIAM J. Math. Anal., 31 (2000), 514-534.  doi: 10.1137/S0036141098346785.

[17]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equations, 195 (2003), 430-470.  doi: 10.1016/S0022-0396(03)00175-X.

[18]

Y.-L. Tian and X.-Q. Zhao, Bistable traveling waves for a competitive-cooperative system with nonlocal delays, J. Differential Equations, 264 (2018), 5263-5299.  doi: 10.1016/j.jde.2018.01.010.

[19]

S. Trofimchuk and V. Volpert, Global continuation of monotone waves for bistable delayed equations with unimodal nonlinearities, Nonlinearity, 32 (2019), 2593-2632.  doi: 10.1088/1361-6544/ab0e23.

[20]

Z.-C. WangW.-T. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay, J. Differential Equations, 238 (2007), 153-200.  doi: 10.1016/j.jde.2007.03.025.

[21]

J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-4050-1.

[22]

S.-L. Wu and C.-H. Hsu, Entire solutions with annihilating fronts to a nonlocal dispersal equation with bistable nonlinearity and spatio-temporal delay, J. Dynam. Differential Equations, 29 (2017), 409-430.  doi: 10.1007/s10884-015-9450-1.

[23]

S.-L. Wu and C.-H. Hsu, Periodic traveling fronts for partially degenerate reaction-diffusion systems with bistable and time-periodic nonlinearity, Adv. Nonlinear Anal., 9 (2020), 923-957.  doi: 10.1515/anona-2020-0033.

[24]

Y. Xing and G. Lin, Traveling wave solutions in a delayed competitive model, J. Math. Anal. Appl., 507 (2022), Paper No. 125766, 20 pp. doi: 10.1016/j.jmaa.2021.125766.

[25]

Y.-R. YangW.-T. Li and S.-L. Wu, Global exponential stability of traveling fronts in delayed bistable systems. (Chinese), Chinese J. Contemp. Math., 31 (2010), 249-262. 

[26]

Y.-R. Yang and N.-W. Liu, Monotonicity and uniqueness of traveling waves in bistable systems with delay, Electron. J. Differential Equations, 2014 (2014), 12 pp.

[27]

Y. Zhang and X.-Q. Zhao, Uniqueness and stability of bistable waves for monotone semiflows, Proc. Amer. Math. Soc., 149 (2021), 4287-4302.  doi: 10.1090/proc/15506.

show all references

References:
[1]

M. AlfaroA. Ducrot and T. Giletti, Travelling waves for a non-monotone bistable equation with delay: Existence and oscillations, Proc. Lond. Math. Soc., 116 (2018), 729-759.  doi: 10.1112/plms.12092.

[2]

P. W. BatesP. C. FifeX. Ren and X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138 (1997), 105-136.  doi: 10.1007/s002050050037.

[3]

W.-J. BoG. Lin and S. Ruan, Traveling wave solutions for time periodic reaction-diffusion systems, Discrete Contin. Dyn. Syst., 38 (2018), 4329-4351.  doi: 10.3934/dcds.2018189.

[4]

X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160. 

[5]

J. Fang and X.-Q. Zhao, Bistable traveling waves for monotone semiflows with application, J. Eur. Math. Soc., 17 (2015), 2243-2288.  doi: 10.4171/JEMS/556.

[6]

P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Rational Mech. Anal., 65 (1977), 335-361.  doi: 10.1007/BF00250432.

[7]

K. Li and X. Li, Existence and stability of bistable wavefronts in a nonlocal delayed reaction-diffusion epidemic system, European J. Appl. Math., 32 (2021), 146-176.  doi: 10.1017/s0956792520000078.

[8]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1-40.  doi: 10.1002/cpa.20154.

[9]

G. Lin and W.-T. Li, Bistable wavefronts in a diffusive and competitive Lotka-Volterra type system with nonlocal delays, J. Differential Equations, 244 (2008), 487-513.  doi: 10.1016/j.jde.2007.10.019.

[10]

S. Ma and J. Wu, Existence, uniqueness and asymptotic stability of traveling wavefronts in a non-local delayed diffusion equation, J. Dynam. Differential Equations, 19 (2007), 391-436.  doi: 10.1007/s10884-006-9065-7.

[11]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science, 197 (1977), 287-289.  doi: 10.1126/science.267326.

[12]

R. H. Martin and H. L. Smith, Abstract functional-differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.  doi: 10.2307/2001590.

[13]

A. Ruiz-Herrera, Delay reaction-diffusion systems via discrete dynamics, SIAM J. Math. Anal., 52 (2020), 6297-6312.  doi: 10.1137/19M1304477.

[14]

K. W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional-differential equations, Trans. Amer. Math. Soc., 302 (1987), 587-615.  doi: 10.2307/2000859.

[15]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, AMS, Providence, RI, 1995.

[16]

H. L. Smith and X.-Q. Zhao, Global asymptotic stability of traveling waves in delayed reaction-diffusion equations, SIAM J. Math. Anal., 31 (2000), 514-534.  doi: 10.1137/S0036141098346785.

[17]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equations, 195 (2003), 430-470.  doi: 10.1016/S0022-0396(03)00175-X.

[18]

Y.-L. Tian and X.-Q. Zhao, Bistable traveling waves for a competitive-cooperative system with nonlocal delays, J. Differential Equations, 264 (2018), 5263-5299.  doi: 10.1016/j.jde.2018.01.010.

[19]

S. Trofimchuk and V. Volpert, Global continuation of monotone waves for bistable delayed equations with unimodal nonlinearities, Nonlinearity, 32 (2019), 2593-2632.  doi: 10.1088/1361-6544/ab0e23.

[20]

Z.-C. WangW.-T. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay, J. Differential Equations, 238 (2007), 153-200.  doi: 10.1016/j.jde.2007.03.025.

[21]

J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-4050-1.

[22]

S.-L. Wu and C.-H. Hsu, Entire solutions with annihilating fronts to a nonlocal dispersal equation with bistable nonlinearity and spatio-temporal delay, J. Dynam. Differential Equations, 29 (2017), 409-430.  doi: 10.1007/s10884-015-9450-1.

[23]

S.-L. Wu and C.-H. Hsu, Periodic traveling fronts for partially degenerate reaction-diffusion systems with bistable and time-periodic nonlinearity, Adv. Nonlinear Anal., 9 (2020), 923-957.  doi: 10.1515/anona-2020-0033.

[24]

Y. Xing and G. Lin, Traveling wave solutions in a delayed competitive model, J. Math. Anal. Appl., 507 (2022), Paper No. 125766, 20 pp. doi: 10.1016/j.jmaa.2021.125766.

[25]

Y.-R. YangW.-T. Li and S.-L. Wu, Global exponential stability of traveling fronts in delayed bistable systems. (Chinese), Chinese J. Contemp. Math., 31 (2010), 249-262. 

[26]

Y.-R. Yang and N.-W. Liu, Monotonicity and uniqueness of traveling waves in bistable systems with delay, Electron. J. Differential Equations, 2014 (2014), 12 pp.

[27]

Y. Zhang and X.-Q. Zhao, Uniqueness and stability of bistable waves for monotone semiflows, Proc. Amer. Math. Soc., 149 (2021), 4287-4302.  doi: 10.1090/proc/15506.

Figure 1.  The evolution of (13) with $ r = 0.5 $. From the viewpoint of population dynamics, $ u_2 $ almost invades the habitat of $ u_1 $ at a constant speed $ 0.17 $
Figure 2.  The evolution of (13) with $ r = 2.0 $. From the viewpoint of population dynamics, $ u_1 $ almost invades the habitat of $ u_2 $ at a constant speed $ 0.24 $
[1]

Anne Mund, Christina Kuttler, Judith Pérez-Velázquez. Existence and uniqueness of solutions to a family of semi-linear parabolic systems using coupled upper-lower solutions. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5695-5707. doi: 10.3934/dcdsb.2019102

[2]

Chunyan Ji, Yang Xue, Yong Li. Periodic solutions for SDEs through upper and lower solutions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4737-4754. doi: 10.3934/dcdsb.2020122

[3]

João Fialho, Feliz Minhós. The role of lower and upper solutions in the generalization of Lidstone problems. Conference Publications, 2013, 2013 (special) : 217-226. doi: 10.3934/proc.2013.2013.217

[4]

Luisa Malaguti, Cristina Marcelli. Existence of bounded trajectories via upper and lower solutions. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 575-590. doi: 10.3934/dcds.2000.6.575

[5]

Massimo Tarallo, Zhe Zhou. Limit periodic upper and lower solutions in a generic sense. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 293-309. doi: 10.3934/dcds.2018014

[6]

Telma Silva, Adélia Sequeira, Rafael F. Santos, Jorge Tiago. Existence, uniqueness, stability and asymptotic behavior of solutions for a mathematical model of atherosclerosis. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 343-362. doi: 10.3934/dcdss.2016.9.343

[7]

Alberto Boscaggin, Fabio Zanolin. Subharmonic solutions for nonlinear second order equations in presence of lower and upper solutions. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 89-110. doi: 10.3934/dcds.2013.33.89

[8]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[9]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3683-3708. doi: 10.3934/dcds.2021012

[10]

Ana Maria Bertone, J.V. Goncalves. Discontinuous elliptic problems in $R^N$: Lower and upper solutions and variational principles. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 315-328. doi: 10.3934/dcds.2000.6.315

[11]

Ciprian Preda, Petre Preda, Adriana Petre. On the asymptotic behavior of an exponentially bounded, strongly continuous cocycle over a semiflow. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1637-1645. doi: 10.3934/cpaa.2009.8.1637

[12]

Shuxia Pan. Asymptotic spreading in a delayed dispersal predator-prey system without comparison principle. Electronic Research Archive, 2019, 27: 89-99. doi: 10.3934/era.2019011

[13]

Christoph Kawan. Upper and lower estimates for invariance entropy. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 169-186. doi: 10.3934/dcds.2011.30.169

[14]

Robert Elliott, Dilip B. Madan, Tak Kuen Siu. Lower and upper pricing of financial assets. Probability, Uncertainty and Quantitative Risk, 2022, 7 (1) : 45-66. doi: 10.3934/puqr.2022004

[15]

Rubén Figueroa, Rodrigo López Pouso, Jorge Rodríguez–López. Existence and multiplicity results for second-order discontinuous problems via non-ordered lower and upper solutions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 617-633. doi: 10.3934/dcdsb.2019257

[16]

Armengol Gasull, Hector Giacomini, Joan Torregrosa. Explicit upper and lower bounds for the traveling wave solutions of Fisher-Kolmogorov type equations. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3567-3582. doi: 10.3934/dcds.2013.33.3567

[17]

Nakao Hayashi, Chunhua Li, Pavel I. Naumkin. Upper and lower time decay bounds for solutions of dissipative nonlinear Schrödinger equations. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2089-2104. doi: 10.3934/cpaa.2017103

[18]

Alberto Cabada, João Fialho, Feliz Minhós. Non ordered lower and upper solutions to fourth order problems with functional boundary conditions. Conference Publications, 2011, 2011 (Special) : 209-218. doi: 10.3934/proc.2011.2011.209

[19]

Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747

[20]

Xin Lai, Xinfu Chen, Mingxin Wang, Cong Qin, Yajing Zhang. Existence, uniqueness, and stability of bubble solutions of a chemotaxis model. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 805-832. doi: 10.3934/dcds.2016.36.805

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (106)
  • HTML views (53)
  • Cited by (0)

Other articles
by authors

[Back to Top]