This paper deals with the diffusive epidemic model with saturated incidence and logistic growth,
$ \begin{align*} \begin{cases} \dfrac{\partial S}{\partial t} = d_S \Delta S - \dfrac{\beta S I}{1+\alpha I} + rS\left(1- \dfrac{S}{K} \right), &x \in \Omega, \ t>0, \\ \dfrac{\partial I}{\partial t} = d_I \Delta I + \dfrac{\beta S I}{1+\alpha I} - \gamma I, &x \in \Omega, \ t>0, \end{cases} \end{align*} $
where $ \Omega \subset \mathbb{R}^N $ $ (N \in \mathbb{N}) $ is a bounded domain with smooth boundary and $ d_S, d_I, K, r, \alpha, \beta, \gamma >0 $ are constants. Setting $ \mathcal{R}_0: = \frac{K \beta}{\gamma} $, Avila-Vales et al. [1] succeeded in showing that if $ \mathcal{R}_0\leq1 $, then the disease-free equilibrium $ (K, 0) $ of the model with saturated treatment is globally asymptotically stable, whereas in the case $ \mathcal{R}_0>1 $ the model admits a constant endemic equilibrium $ (S^*, I^*) $ ($ S^*, I^*>0 $), and it is unknown whether $ (S^*, I^*) $ is globally asymptotically stable or not. The purpose of this paper is to establish that the constant endemic equilibrium of the above model is globally asymptotically stable by constructing a strict Lyapunov functional. The construction is carried out by optimizing a function of two real variables through straightforward calculations, division into some cases and arrangement of several conditions. Moreover, to show that the functional is strict, some auxiliary function is introduced.
Citation: |
[1] | E. Avila-Vales, G. E. García-Almeida and Á. G. C. Pérez, Qualitative analysis of a diffusive SIR epidemic model with saturated incidence rate in a heterogeneous environment, J. Math. Anal. Appl., 503 (2021), Paper No. 125295, 35 pp. doi: 10.1016/j.jmaa.2021.125295. |
[2] | X. Bai and M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553-583. doi: 10.1512/iumj.2016.65.5776. |
[3] | V. Capasso and G. Serio, A generalization of the Kermack–McKendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43-61. doi: 10.1016/0025-5564(78)90006-8. |
[4] | R. Cui, Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 2997-3022. doi: 10.3934/dcdsb.2020217. |
[5] | A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. |
[6] | J. K. Ghosh, P. Majumdar and U. Ghosh, Qualitative analysis and optimal control of an SIR model with logistic growth, non-monotonic incidence and saturated treatment, Math. Model. Nat. Phenom., 16 (2021), Paper No. 13, 26 pp. doi: 10.1051/mmnp/2021004. |
[7] | G. Guan and Z. Guo, Bifurcation and stability of a delayed SIS epidemic model with saturated incidence and treatment rates in heterogeneous networks, Appl. Math. Model., 101 (2022), 55-75. doi: 10.1016/j.apm.2021.08.024. |
[8] | D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Vol. 840. Springer-Verlag, Berlin-New York, 1981. |
[9] | D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107. doi: 10.1016/j.jde.2004.10.022. |
[10] | W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Royal Soc. Lond. A, 115 (1927), 700-721. |
[11] | O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, R.I., 1968. |
[12] | G. Liu and X. Zhang, Analysis on a diffusive two-stage epidemic model with logistic growth and saturated incidence rates, Nonlinear Anal. Real World Appl., 64 (2022), Paper No. 103444. doi: 10.1016/j.nonrwa.2021.103444. |
[13] | J. V. Noble, Geographic and temporal development of plagues, Nature, 250 (1974), 726-728. |
[14] | Á. G. C. Pérez, E. Avila-Vales and G. E. García-Almeida, Bifurcation analysis of an SIR model with logistic growth, nonlinear incidence, and saturated treatment, Complexity, 2019 (2019), Art. ID 9876013, 21 pp. |
[15] | M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984, Corrected reprint of the 1967 original. doi: 10.1007/978-1-4612-5282-5. |
[16] | G. F. Webb, A reaction-diffusion model for a deterministic diffusive epidemic, J. Math. Anal. Appl., 84 (1981), 150-161. doi: 10.1016/0022-247X(81)90156-6. |
[17] | J. Zhang and R. Cui, Asymptotic profiles of the endemic equilibrium of a diffusive SIS epidemic system with saturated incidence rate and spontaneous infection, Math. Methods Appl. Sci., 44 (2021), 517-532. doi: 10.1002/mma.6754. |
[18] | J. Zhang, Z. Jin, Q. Liu and Z.-Y. Zhang, Analysis of a delayed SIR model with nonlinear incidence rate, Discrete Dyn. Nat. Soc., 2008 (2008), Art. ID 636153, 16 pp. doi: 10.1155/2008/636153. |
[19] | X. Zhang and L. Chen, The periodic solution of a class of epidemic models, Comput. Math. Appl., 38 (1999), 61-71. doi: 10.1016/S0898-1221(99)00206-0. |
[20] | Y. Zhou, D. Xiao and Y. Li, Bifurcations of an epidemic model with non-monotonic incidence rate of saturated mass action, Chaos Solitons Fractals, 32 (2007), 1903-1915. doi: 10.1016/j.chaos.2006.01.002. |
The solution of (1.1) with the parameters given in (4.1). The distributions of
The solution of (1.1) with the parameters given in (4.2). Even though the parameters do not satisfy the condition (1.3), the asymptotic distributions of