In this paper, we deal with the following indirect pursuit-evasion model
under homogeneous Neumann boundary conditions in a bounded domain
$ \chi<\left\{\begin{array}{ll} 4\sqrt{\frac{a(1+ab)}{b(\lambda+a\mu)}}, \quad\; \; \mbox{if}\; \; \lambda>b\mu, \\ 4\sqrt{\frac{a}{b\lambda}}, \quad\; \; \mbox{if}\; \; \lambda\leq b\mu\ \end{array}\right. $
and
$ u_* = \left\{\begin{array}{ll} \frac{\lambda+a\mu}{1+ab}, \quad\; \; \mbox{if}\; \; \lambda>b\mu, \\ \lambda, \quad\; \; \mbox{if}\; \; \lambda\leq b\mu\ \end{array}\right. $
and
Citation: |
[1] | P. Amorim, B. Telch and L. M. Villada, A reaction-diffusion predator-prey model with pursuit, evasion, and nonlocal sensing, Math. Biosci. Eng., 16 (2019), 5114-5145. doi: 10.3934/mbe.2019257. |
[2] | X. Bai and M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553-583. doi: 10.1512/iumj.2016.65.5776. |
[3] | N. Bellomo, A. Belloquid, Y. Tao and M. Winkler, Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763. doi: 10.1142/S021820251550044X. |
[4] | H. Brézis and W. A. Strauss, Semi-linear second-order elliptic equations in $L^1$, J. Math. Soc. Japan, 25 (1973), 565-590. doi: 10.2969/jmsj/02540565. |
[5] | T. Ciéslak, P. Laurencot and C. Morales-Rodrigo, Global existence and convergence to steady-states in a chemorepulsion system, Banach Center Publ, Polish Acad. Sci., 81 (2008), 105-117. doi: 10.4064/bc81-0-7. |
[6] | T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057-1076. doi: 10.1088/0951-7715/21/5/009. |
[7] | K. Fujie, A. Ito, M. Winkler, et al., Stabilization in a chemotaxis model for tumor invasion, Discrete Contin. Dyn. Syst., 36 (2016), 151-169. doi: 10.3934/dcds.2016.36.151. |
[8] | T. Goudon, B. Nkonga, M. Rascle and M. Ribot, Self-organized populations interacting under pursuit-evasion dynamics, Phys. D., 304/305 (2015), 1-22. doi: 10.1016/j.physd.2015.03.012. |
[9] | T. Goudon and L. Urrutia, Analysis of kinetic and macroscopic models of pursuit-evasion dynamics, Commun. Math. Sci., 14 (2016), 2253-2286. doi: 10.4310/CMS.2016.v14.n8.a7. |
[10] | M. Herrero and J. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Super. Pisa Cl. Sci., 24 (1997), 633-683. |
[11] | D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Diff. Eqns., 215 (2005), 52-107. doi: 10.1016/j.jde.2004.10.022. |
[12] | B. Hu and Y. Tao, Boundedness in a parabolic-elliptic chemotaxis-growth system under a critical parameter condition, Appl. Math. Lett., 64 (2017), 1-7. doi: 10.1016/j.aml.2016.08.003. |
[13] | W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Am. Math. Soc., 329 (1992), 819-824. |
[14] | H. Jin and Z. Wang, Global stability of prey-taxis systems, J. Diff. Eqns., 262 (2017), 1257-1290. doi: 10.1016/j.jde.2016.10.010. |
[15] | K. Kang and A. Stevens, Blowup and global solutions in a chemotaxis-growth system, Nonlinear Anal., 135 (2016), 57-72. doi: 10.1016/j.na.2016.01.017. |
[16] | P. Kareiva and G. Odell, Swarms of predators exhibit preytaxis if individual predators use area-restricted search, The American Naturalist, 130 (1987), 233-270. |
[17] | E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5. |
[18] | O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'eva, Linear and Quasi-Linear Equations of Parabolic Type, American Mathematical Society, Providence, R.I. 1968 |
[19] | J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Diff. Eqns., 258 (2015), 1158-1191. doi: 10.1016/j.jde.2014.10.016. |
[20] | G. Li, Y. Tao and M. Winkler, Large time behavior in a predator-prey system with indirect pursuit-evasion interaction, Disc. Cont. Dyna. Syst. B., 25 (2020), 4383-4396. doi: 10.3934/dcdsb.2020102. |
[21] | X. Li and Z. Xiang, On an attraction-repulsion chemotaxis system with a logistic source, IMA J. Appl. Math., 81 (2016), 165-198. doi: 10.1093/imamat/hxv033. |
[22] | K. Lin, C. Mu and Y. Gao, Boundedness and blow up in the higher-dimensional attraction-repulsion chemotaxis system with nonlinear diffusion, J. Diff. Eqns., 261 (2016), 4524-4572. doi: 10.1016/j.jde.2016.07.002. |
[23] | Y. Lou and W. Ni, Diffusion, self-diffusion and cross-diffusion, J. Diff. Eqns., 131 (1996), 79-131. doi: 10.1006/jdeq.1996.0157. |
[24] | M. Luca, A. Chavez-Ross, L. Edelstein-Keshet and A. Mogilner, Chemotactic signalling, microglia, and alzheimer's disease senile plagues: Is there a connection, Bull. Math. Biol., 65 (2003), 693-730. |
[25] | T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), 581-601. |
[26] | T. Nagai, T. Senba and K. Yoshida, Application of the trudinger-moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, Ser. Int., 40 (1997), 411-433. |
[27] | L. Nirenberg, On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser., 13 (1959), 115-162. |
[28] | K. Osaki, T. Tsujikawa, A. Yagi and M. Mimura, Exponential attractor for a chemotaxisgrowth system of equations, Nonlinear Anal. TMA., 51 (2002), 119-144. doi: 10.1016/S0362-546X(01)00815-X. |
[29] | K. J. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543. |
[30] | M. M. Porzio and V. Vespri, Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Diff. Eqns., 103 (1993), 146-178. doi: 10.1006/jdeq.1993.1045. |
[31] | S. Qiu, C. Mu and H. Yi, Boundedness and asymptotic stability in a predator-prey chemotaxis system with indirect pursuit-evasion dynamics, Acta Math. Sci., 42 (2022), 1035-1057. doi: 10.1007/s10473-022-0313-7. |
[32] | Y. Tao and M. Winkler, Large time behavior in a multidimensional chemotaxis–haptotaxis model with slow signal diffusion, SIAM J. Math. Anal., 47 (2015), 4229-4250. doi: 10.1137/15M1014115. |
[33] | Y. Tao and M. Winkler, Existence theory and qualitative analysis for a fully cross-diffusive predator-prey system, SIAM J. Math. Anal., 54 (2022), 4806-4864. doi: 10.1137/21M1449841. |
[34] | Y. Tao and M. Winkler, A fully cross-diffusive two-component evolution system: Existence and qualitative analysis via entropy-consistent thin-film-type approximation, J. Func. Anal., 281 (2021), 109069. doi: 10.1016/j.jfa.2021.109069. |
[35] | B. Telch, Global boundedness in a chemotaxis quasilinear parabolic predator prey system with pursuit-evasion, Nonlinear Anal. RWA, 59 (2021), 103269. doi: 10.1016/j.nonrwa.2020.103269. |
[36] | J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Diff. Eqns., 32 (2007), 849-877. doi: 10.1080/03605300701319003. |
[37] | M. A. Tsyganov, J. Brindley, A. V. Holden and V. N. Biktashev, Quasi-soliton interaction of pursuit-evasion waves in a predator-prey system, Phys. Rev. Lett., 91 (2003), 218102. |
[38] | Y. Tyutyunov, L. Titova and R. Arditi, A minimal model of pursuit-evasion in a predator-prey system, Math. Model. Nat. Phenom., 2 (2007), 122-134. doi: 10.1051/mmnp:2008028. |
[39] | L. Wang, C. Mu and P. Zheng, On a quasilinear parabolic–elliptic chemotaxis system with logistic source, J. Diff. Eqns., 256 (2014), 1847-1872. doi: 10.1016/j.jde.2013.12.007. |
[40] | M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Diff. Eqns., 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008. |
[41] | M. Winkler, Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source, Comm. Parti. Diff. Eqns., 35 (2010), 1516-1537. doi: 10.1080/03605300903473426. |
[42] | M. Winkler, Global asymptotic stability of constant equilibriain a fully parabolic chemotaxis system with strong logistic dampening, J. Diff. Eqns., 257 (2014), 1056-1077. doi: 10.1016/j.jde.2014.04.023. |
[43] | S. Wu, J. Shi and B. Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Diff. Eqns., 260 (2016), 5847-5874. doi: 10.1016/j.jde.2015.12.024. |
[44] | J. Xie and J. Zheng, A new result on existence of global bounded classical solution to a attraction-repulsion chemotaxis system with logistic source, J. Diff. Eqns., 298 (2021), 159-181. doi: 10.1016/j.jde.2021.06.040. |
[45] | P. Xu and S. Zheng, Global boundedness in an attraction-repulsion chemotaxis system with logistic source, Appl. Math. Lett., 83 (2018), 1-6. doi: 10.1016/j.aml.2018.03.007. |
[46] | J. Zheng, Boundedness of solutions to a quasilinear parabolic–elliptic Keller–Segel system with logistic source, J. Diff. Eqns., 259 (2015), 120-140. doi: 10.1016/j.jde.2015.02.003. |
[47] | J. Zheng, A note on boundedness of solutions to a higher-dimensional quasi-linear chemotaxis system with logistic source, Zeitsc. Angew. Mathe. Mech., 97 (2017), 414-421. doi: 10.1002/zamm.201600166. |
[48] | J. Zheng, A new result for the global existence (and boundedness) and regularity of a three-dimensional Keller-Segel-Navier-Stokes system modeling coral fertilization, J. Diff. Eqns., 272 (2021), 164-202. doi: 10.1016/j.jde.2020.09.029. |
[49] | J. Zheng, Eventual smoothness and stabilization in a three-dimensional Keller-Segel-Navier-Stokes system with rotational flux, Calc. Var. Partial Differential Equations, 61 (2022), 52. doi: 10.1007/s00526-021-02164-6. |
[50] | J. Zheng and Y. Ke, Global bounded weak solutions for a chemotaxis-Stokes system with nonlinear diffusion and rotation, J. Diff. Eqns., 289 (2021), 182-235. doi: 10.1016/j.jde.2021.04.020. |