We study the spreading dynamics for a three-species predator-prey system with two weak competing predators and one prey in a shifting habitat. First, we derive some extinction results for each species. Then we provide some persistence theorems for each species with moving speeds exceed the shifting speed, but less than some certain quantities. Finally, the convergence to a certain constant state is proven in each persistent regime.
Citation: |
[1] | D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, Partial Differential Equations and Related Topics, 446 (1975), 5-49. |
[2] | H. Berestycki, L. Desvillettes and O. Diekmann, Can climate change lead to gap formation?, Ecological Complexity, 20 (2014), 264-270. |
[3] | H. Berestycki, O. Diekmann, C. J. Nagelkerke and P. A. Zegeling, Can a species keep pace with a shifting climate?, Bull. Math. Biol., 71 (2009), 399-429. doi: 10.1007/s11538-008-9367-5. |
[4] | H. Berestycki and J. Fang, Forced waves of the Fisher-KPP equation in a shifting environment, J. Differential Equations, 264 (2018), 2157-2183. doi: 10.1016/j.jde.2017.10.016. |
[5] | H. Berestycki and L. Rossi, Reaction-diffusion equations for population dynamics with forced speed, Ⅰ - the case of the whole space, Discrete Contin. Dyn. Syst., 21 (2008), 41-67. doi: 10.3934/dcds.2008.21.41. |
[6] | H. Berestycki and L. Rossi, Reaction-diffusion equations for population dynamics with forced speed, Ⅱ - cylindrical type domains, Discrete Contin. Dyn. Syst., 25 (2009), 19-61. doi: 10.3934/dcds.2009.25.19. |
[7] | J. Bouhours and T. Giletti, Spreading and vanishing for a monostable reaction-diffusion equation with forced speed, J. Dynam. Differential Equations, 31 (2019), 247-286. doi: 10.1007/s10884-018-9643-5. |
[8] | W. Choi, T. Giletti and J.-S. Guo, Persistence of species in a predator-prey system with climate change and either nonlocal or local dispersal, J. Differential Equations, 302 (2021), 807-853. doi: 10.1016/j.jde.2021.09.017. |
[9] | F. D. Dong, B. Li and W.-T. Li, Forced waves in a Lotka-Volterra competition-diffusion model with a shifting habitat, J. Differential Equations, 276 (2021), 433-459. doi: 10.1016/j.jde.2020.12.022. |
[10] | A. Ducrot, T. Giletti, J.-S. Guo and M. Shimojo, Asymptotic spreading speeds for a predator-prey system with two predators and one prey, Nonlinearity, 34 (2021), 669-704. doi: 10.1088/1361-6544/abd289. |
[11] | A. Ducrot, T. Giletti and H. Matano, Spreading speeds for multidimensional reaction-diffusion systems of the prey-predator type, Calc. Var. Partial Differential Equations, 58 (2019), Paper No. 137, 34 pp. doi: 10.1007/s00526-019-1576-2. |
[12] | J. Fang, Y. Lou and J. Wu, Can pathogen spread keep pace with its host invasion?, SIAM J. Appl. Math., 76 (2016), 1633-1657. doi: 10.1137/15M1029564. |
[13] | J. Fang, R. Peng and X.-Q. Zhao, Propagation dynamics of a reaction-diffusion equation in a time-periodic shifting environment, J. Math. Pures Appl., 147 (2021), 1-28. doi: 10.1016/j.matpur.2021.01.001. |
[14] | J.-S. Guo, K.-I. Nakamura, T. Ogiwara and C.-C. Wu, Traveling wave solutions for a predator-prey system with two predators and one prey, Nonlinear Anal. Real World Appl., 54 (2020), Art. 103111. doi: 10.1016/j.nonrwa.2020.103111. |
[15] | J.-S. Guo and M. Shimojo, Stabilization to a positive equilibrium for some reaction-diffusion systems, Nonlinear Analysis: Real World Applications, 62 (2021), Art. 103378. doi: 10.1016/j.nonrwa.2021.103378. |
[16] | H. Hu and X. Zou, Existence of an extinction wave in the Fisher equation with a shifting habitat, Proc. Amer. Math. Soc., 145 (2017), 4763-4771. |
[17] | B. Li, S. Bewick, J. Shang and W. F. Fagan, Persistence and spread of a species with a shifting habitat edge, SIAM J. Appl. Math., 74 (2014), 1397-1417. doi: 10.1137/130938463. |
[18] | W. T. Li, J. B. Wang and X.-Q. Zhao, Spatial dynamics of a nonlocal dispersal population model in a shifting environment, J. Nonlinear Sci., 28 (2018), 1189-1219. doi: 10.1007/s00332-018-9445-2. |
[19] | H.-H. Vo, Persistence versus extinction under a climate change in mixed environments, J. Differential Equations, 259 (2015), 4947-4988. doi: 10.1016/j.jde.2015.06.014. |
[20] | C. Wu, Y. Wang and X. Zou, Spatial-temporal dynamics of a Lotka-Volterra competition model with nonlocal dispersal under shifting environment, J. Differential Equations, 267 (2019), 4890-4921. doi: 10.1016/j.jde.2019.05.019. |
[21] | Y. Yuan, Y. Wang and X. Zou, Spatial dynamics of a Lotka-Volterra competition model with a shifting habitat, Discrete Contin. Dyn. Syst., Ser. B, 24 (2019), 5633-5671. doi: 10.3934/dcdsb.2019076. |
[22] | G. B. Zhang and X. Q. Zhao, Propagation dynamics of a nonlocal dispersal Fisher-KPP equation in a time-periodic shifting habitat, J. Differential Equations, 268 (2020), 2852-2885. doi: 10.1016/j.jde.2019.09.044. |
[23] | Z. Zhang, W. Wang and J. Yang, Persistence versus extinction for two competing species under a climate change, Nonlinear Anal. Model. Control, 22 (2017), 285-302. doi: 10.15388/NA.2017.3.1. |