In this paper, we consider the properties of solutions for the following fractional parabolic equation
$ \begin{equation*} \frac{\partial u}{\partial t}(x, t)+(-\Delta)^su(x, t) = f(u(x, t)), \ (x, t)\in\mathbb{R}^N\times\mathbb{R}. \end{equation*} $
Without assuming any decay behavior of $ u $ near infinity, we first establish a narrow region principle in unbounded domains, then employing the direct method of moving planes, we derive the monotonicity, antisymmetry and non-existence of the solutions. In most previous articles, to carry out the direct method of moving planes in the whole space, they often needed to assume that the solution tends to zero near infinity or that the solution is divided by a function to make the new solution satisfy such an asymptotic decay. Here we develop a new approach–estimating the singular integrals defining $ (-\Delta)^s $ and the derivative of the solution with respect to time along a sequence of approximate extreme points.
We believe that the new method employed here will be very helpful to study a class of parabolic equations involving nonlinear nonlocal operators.
Citation: |
[1] | D. Applebaum, L$\mathrm{\acute{e}}$vy processes-from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347. |
[2] | H. Berestycki and L. Nirenberg, Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations, J. Geom. Phys., 5 (1988), 237-275. doi: 10.1016/0393-0440(88)90006-X. |
[3] | H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N.S.), 22 (1991), 1-37. doi: 10.1007/BF01244896. |
[4] | J. Bertoin, L$\mathrm{\acute{e}}$vy Processes, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1996. |
[5] | J. Bouchaud and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), 127-293. doi: 10.1016/0370-1573(90)90099-N. |
[6] | L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32 (2007), 1245-1260. doi: 10.1080/03605300600987306. |
[7] | L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasigeostrophic equation, Ann. of Math., 171 (2010), 1903-1930. doi: 10.4007/annals.2010.171.1903. |
[8] | M. Cai and F. Li, Properties of positive solutions to nonlocal problems with negative exponents in unbounded domains, Nonlinear Anal., 200 (2020), 112086. doi: 10.1016/j.na.2020.112086. |
[9] | S. Chang and M. Gonz$\mathrm{\acute{a}}$lez, Fractional Laplacian in conformal geometry, Adv. Math., 226 (2011), 1410-1432. doi: 10.1016/j.aim.2010.07.016. |
[10] | W. Chen, Y. Fang and R. Yang, Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274 (2015), 167-198. doi: 10.1016/j.aim.2014.12.013. |
[11] | W. Chen and Y. Hu, Monotonicity of positive solutions for nonlocal problems in unbounded domains, J. Funct. Anal., 281 (2021), 109187. doi: 10.1016/j.jfa.2021.109187. |
[12] | W. Chen, C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437. doi: 10.1016/j.aim.2016.11.038. |
[13] | W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Commun. Partial Differ. Equ., 30 (2005), 59-65. doi: 10.1081/PDE-200044445. |
[14] | W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116. |
[15] | W. Chen, Y. Li and P. Ma, The Fractional Laplacian, World Scientific Publishing Company, New York, 2020. doi: 10.1142/10550. |
[16] | W. Chen, Y. Li and R. Zhang, A direct method of moving spheres on fractional order equations, J. Funct. Anal., 272 (2017), 4131-4157. doi: 10.1016/j.jfa.2017.02.022. |
[17] | W. Chen, P. Wang, Y. Niu and Y. Hu, Asymptotic method of moving planes for fractional parabolic equations, Adv. Math., 377 (2021), 107463. doi: 10.1016/j.aim.2020.107463. |
[18] | W. Chen and L. Wu, Liouville theorems for fractional parabolic equations, Adv. Nonlinear Stud., 21 (2021), 939-958. doi: 10.1515/ans-2021-2148. |
[19] | W. Chen and L. Wu, Sliding methods for the fractional reaction-diffusion equations, preprint, 2022. |
[20] | W. Chen, L. Wu and P. Wang, Nonexistence of solutions for indefinite fractional parabolic equations, Adv. Math., 392 (2021), 108018. doi: 10.1016/j.aim.2021.108018. |
[21] | P. Constantin, Euler equations, Navier-Stokes equations and turbulence, Mathematical Foundation of Turbulent Viscous Flows, Lecture Notes Math., 1871, Springer, Berlin, Heidelberg, 2006, 1-43. doi: 10.1007/11545989_1. |
[22] | E. Dancer, Some notes on the method of moving planes, Bull. Austral. Math. Soc., 46 (1992), 425-434. doi: 10.1017/S0004972700012089. |
[23] | E. De Giorgi, Convergence problems for functionals and operators, Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis, Pitagora, Bologna, 1979,131-188. |
[24] | X. Fern$\mathrm{\acute{a}}$ndez-Real and X. Ros-Oton, Regularity theory for general stable operators: Parabolic equations, J. Funct. Anal., 272 (2017), 4165-4221. doi: 10.1016/j.jfa.2017.02.015. |
[25] | B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598. doi: 10.1002/cpa.3160340406. |
[26] | J. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988. doi: 10.1090/surv/025. |
[27] | O. Kavian, Remarks on the large time behaviour of a nonlinear diffusion equation, Ann. Inst. H. Poincar$\mathrm{\acute{e}}$ Anal. Non Lin$\mathrm{\acute{e}}$aire., 4 (1987), 423-452. |
[28] | T. Langlands, B. Henry and S. Wearne, Fractional cable equation models for anomalous electrodiffusion in nerve cells: Infinite domain solutions, J. Math. Biol., 59 (2009), 761-808. doi: 10.1007/s00285-009-0251-1. |
[29] | H. Levine and P. Meier, A blowup result for the critical exponent in cones, Israel J. Math., 67 (1989), 129-136. doi: 10.1007/BF02937290. |
[30] | L. Luo and Z. Zhang, Symmetry and nonexistence of positive solutions for fully nonlinear nonlocal systems, Appl. Math. Lett., 124 (2022), 107674. doi: 10.1016/j.aml.2021.107674. |
[31] | F. Merle and H. Zaag, Optimal estimates for blowup rate and behavior for nonlinear heat equations, Comm. Pure Appl. Math., 51 (1998), 139-196. doi: 10.1002/(SICI)1097-0312(199802)51:2<139::AID-CPA2>3.0.CO;2-C. |
[32] | P. Pol$\mathrm{\acute{a}\check{c}}$ik and P. Quittner, Liouville type theorems and complete blow-up for indefinite superlinear parabolic equations, Nonlinear Elliptic and Parabolic Problems, Progr. Nonlinear Differential Equations Appl., 64, Birkh$\mathrm{\ddot{a}}$user, Basel, 2005,391-402. doi: 10.1007/3-7643-7385-7_22. |
[33] | P. Pol$\mathrm{\acute{a}\check{c}}$ik, P. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part II: Parabolic equations, Indiana Univ. Math. J., 56 (2007), 879-908. doi: 10.1512/iumj.2007.56.2911. |
[34] | J. Serrin and H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math., 189 (2002), 79-142. doi: 10.1007/BF02392645. |
[35] | R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8. |
[36] | L. Wu and W. Chen, Sliding methods for the fractional $p$-Laplacian, Adv. Math., 361 (2020), 106933. doi: 10.1016/j.aim.2019.106933. |
[37] | L. Wu and W. Chen, Monotonicity of solutions for fractional equations with De Giorgi type nonlinearities (in Chinese), Sci. Sin. Math., 52 (2022), 1-22. |
[38] | L. Wu and M. Yu, Some monotonicity results for the fractional Laplacian in unbounded domain, Complex Var. Elliptic Equ., 66 (2021), 689-707. doi: 10.1080/17476933.2020.1736053. |
[39] | L. Wu, M. Yu and B. Zhang, Monotonicity results for the fractional $p$-Laplacian in unbounded domains, Bull. Math. Sci., 11 (2021), 2150003. doi: 10.1142/S166436072150003X. |