In this paper, we investigate the finite-time flocking problem for a modified Cucker-Smale model with unknown Hölder continuous intrinsic dynamics. Firstly, we use the energy method to show conditional finite-time flocking would occur under some conditions depending on initial data, exponent $ \beta $ and Hölder constant $ L $. Then we give an example consisting of two agents to show that for any $ \beta>0 $ or large enough $ L $, there is no unconditional finite-time flocking occurrence. Finally, we present some numerical simulations to show our theoretical results are valid.
Citation: |
[1] | S. P. Bhat and D. S. Bernstein, Finite-time stability of continuous autonomous systems, SIAM J. Control Optim., 38 (2000), 751-766. doi: 10.1137/S0363012997321358. |
[2] | S. Bolouki and R. Malhamé, Theorems About Ergodicity and Class-Ergodicity of Chains with Applications in Known Consensus Models, Fiftieth Annual Allerton Conference, 2012, Allerton House, UIUC, Illinois, USA. |
[3] | Y. Cao, W. Ren, D. Casbeer and C. Schumacher, Finite-time connectivity-preserving consensus of networked nonlinear agents with unknown Lipschitz terms, IEEE Trans. Automat. Control, 61 (2016), 1700-1705. doi: 10.1109/TAC.2015.2479926. |
[4] | J. A. Carrillo, Y. P. Choi, P. B. Mucha and J. Peszek, Sharp conditions to avoid collisions in singular Cucker-Smale interactions, Nonlinear Anal. RWA, 37 (2017), 317-328. doi: 10.1016/j.nonrwa.2017.02.017. |
[5] | W. Cheng, B. Jiang, K. Zhang and X. Ding, Robust finite-time cooperative formation control of UGV-UAV with model uncertainties and actuator faults, J. Franklin Inst., 358 (2021), 8811-8837. doi: 10.1016/j.jfranklin.2021.08.038. |
[6] | I. D. Couzin, J. Krause, N. R. Franks and S. Levin, Effective leadership and decision making in animal groups on the move, Nature, 433 (2005), 513-516. |
[7] | F. Cucker and J.-G. Dong, On the critical exponent for flocks under hierarchical leadership, Math. Models Methods Appl. Sci., 19 (2009), 1391-1404. doi: 10.1142/S0218202509003851. |
[8] | F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862. doi: 10.1109/TAC.2007.895842. |
[9] | F. Cucker and S. Smale, On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197-227. doi: 10.1007/s11537-007-0647-x. |
[10] | F. Dalmao and E. Mordecki, Cucker-Smale flocking under hierarchical leadership and random interactions, SIAM J. Appl. Math., 71 (2010), 1307-1316. doi: 10.1137/100785910. |
[11] | F. Dalmao and E. Mordecki, Hierarchical Cucker-Smale model subject to random failure, IEEE Trans. Automat. Control, 57 (2012), 1789-1793. doi: 10.1109/TAC.2012.2188440. |
[12] | J.-G. Dong, Flocking under hierarchical leadership with a free-will leader, Internat. J. Robust Nonlinear Control, 23 (2013), 1891-1898. |
[13] | J.-G. Dong and L. Qiu, Flocking of the Cucker-Smale model on general digraphs, IEEE Trans. Automat. Control, 62 (2017), 5234-5239. doi: 10.1109/TAC.2016.2631608. |
[14] | C. Fu, Y. Tian, H. Huang, L. Zhang and C. Peng, Finite-time trajectory tracking control for a 12-rotor unmanned aerial vehicle with input saturation, ISA Trans., 81 (2018), 52-62. |
[15] | S.-Y. Ha, J. Kim, J. Park and X. Zhang, Complete cluster predictability of the Cucker-Smale flocking model on the real line, Arch. Ration. Mech. Anal., 231 (2019), 319-365. doi: 10.1007/s00205-018-1281-x. |
[16] | S.-Y. Ha, T. Ha and J.-H. Kim, Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity couplings, IEEE Trans. Automat. Control, 55 (2010), 1679-1683. doi: 10.1109/TAC.2010.2046113. |
[17] | S.-Y. Ha, Z. Li and X. Zhang, On the critical exponent of the one-dimensional Cucker-Smale model on a general graph, Math. Models Methods Appl. Sci., 30 (2020), 1653-1703. doi: 10.1142/S0218202520500335. |
[18] | S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean field limit, Commun. Math. Sci., 7 (2009), 297-325. doi: 10.4310/CMS.2009.v7.n2.a2. |
[19] | D. J. Hoare, I. D. Couzin, J.-G. J. Godin and J. Krause, Context-dependent group size choice in fish, Animal Behaviour, 67 (2007), 155-164. |
[20] | A. Jadbabaie, J. Lin and A. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Trans. Automat. Control, 48 (2003), 988-1001. doi: 10.1109/TAC.2003.812781. |
[21] | C.-H. Li and S.-Y. Yang, A new discrete Cucker-Smale flocking model under hierarchical leadership, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2587-2599. doi: 10.3934/dcdsb.2016062. |
[22] | Z. Li, Effectual leadership in flocks with hierarchy and individual preference, Discrete Contin. Dyn. Syst., 34 (2014), 3683-3702. doi: 10.3934/dcds.2014.34.3683. |
[23] | Z. Li, S.-Y. Ha and X. Xue, Emergent phenomena in an ensemble of Cucker-Smale particles under joint rooted leadership, Math. Models Methods Appl. Sci., 24 (2014), 1389-1419. doi: 10.1142/S0218202514500043. |
[24] | Z. Li and X. Xue, Cucker-Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010), 3156-3174. doi: 10.1137/100791774. |
[25] | Z. Li and X. Xue, Cucker-Smale flocking under rooted leadership with free-will agents, Phys. A, 410 (2014), 205-217. doi: 10.1016/j.physa.2014.05.008. |
[26] | H. Liu, X. Wang, X. Li and Y. Liu, Finite-time flocking and collision avoidance for second-order multi-agent systems, Int. J. Syst. Sci., 51 (2020), 102-115. doi: 10.1080/00207721.2019.1701133. |
[27] | Y. Liu and J. Wu, Flocking and asymptotic velocity of the Cucker-Smale model with processing delay, J. Math. Anal. Appl., 415 (2014), 53-61. doi: 10.1016/j.jmaa.2014.01.036. |
[28] | I. Markou, Collision-avoiding in the singular Cucker-Smale model with nonlinear velocity couplings, Discrete Contin. Dyn. Syst., 38 (2018), 5245-5260. doi: 10.3934/dcds.2018232. |
[29] | C. Mavridis, A. Tirumalai and J. Baras, Learning Interaction Dynamics from Particle Trajectories and Density Evolution, 2020 59th IEEE Conference on Decision and Control (CDC), Jeju Island, Republic of Korea, December 14-18, 2020. |
[30] | P. Minakowski, P. Mucha and J. Peszek, Density-induced consensus protocol, Math. Models Methods Appl. Sci., 30 (2020), 2389-2415. doi: 10.1142/S0218202520500451. |
[31] | O. Mofid and S. Mobayen, Adaptive sliding mode control for finite-time stability of quad-rotor UAVs with para-metric uncertainties, ISA Trans., 72 (2018), 1-14. |
[32] | S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923-947. doi: 10.1007/s10955-011-0285-9. |
[33] | S. Motsch and E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Rev., 56 (2014), 577-621. doi: 10.1137/120901866. |
[34] | R. Olfati-Saber, Flocking for multi-agent dynamic systems: Algorithms and theory, IEEE Trans. Automat. Control, 51 (2006), 401-420. doi: 10.1109/TAC.2005.864190. |
[35] | L. Perea, P. Elosegui and G. Gómez, Extension of the Cucker-Smale control law to space flight formation, J. Guidance, Control, and Dynamics, 32 (2009), 527-537. |
[36] | J. Peszek, Existence of piecewise weak solutions of a discrete Cucker-Smale's flocking model with a singular communication weight, J. Differential Equations, 257 (2014), 2900-2925. doi: 10.1016/j.jde.2014.06.003. |
[37] | C. Pignotti and I. Reche Vallejo, Flocking estimates for the Cucker-Smale model with time lag and hierarchical leadership, J. Math. Anal. Appl., 464 (2018), 1313-1332. doi: 10.1016/j.jmaa.2018.04.070. |
[38] | L. Ru, Z. Li and X. Xue, Cucker-Smale model with randomly failed interactions, J. Franklin Inst., 352 (2015), 1099-1118. doi: 10.1016/j.jfranklin.2014.12.007. |
[39] | L. Ru and X. Xue, Flocking of Cucker-Smale model with intrinsic dynamics, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 6817-6835. doi: 10.3934/dcdsb.2019168. |
[40] | J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007/08), 694-719. doi: 10.1137/060673254. |
[41] | R. Shvydkoy and E. Tadmor, Topologically based fractional diffusion and emergent dynamics with short-range interactions, SIAM J. Math. Anal., 52 (2020), 5792-5839. doi: 10.1137/19M1292412. |
[42] | C. Somarakis, E. Paraskevas, S. Baras and N. Motee, Synchronization and Collision Avoidance in Non-Linear Flocking Networks of Autonomous Agents, 24th Mediterranean Conference on Control and Automation (MED), Athens, Greece, June 21-24, 2016. |
[43] | C. Sun, G. Hu, L. Xie and M. Egerstedt, Robust finite-time connectivity preserving coordination of second-order multi-agent systems, Automatica, 89 (2018), 21-27. doi: 10.1016/j.automatica.2017.11.020. |
[44] | Y. Sun, W. Li, H. Shi, D. Zhao and S. Azaele, Finite-time and fixed-time consensus of multiagent networks with pinning control and noise perturbation, SIAM J. Appl. Math., 79 (2019), 111-130. doi: 10.1137/18M1174143. |
[45] | Y. Sun, F. Liu, W. Li and H. Shi, Finite-Time Flocking of Cucker-Smale Systems, Proceedings of the 34th Chinese Control Conference Hangzhou, China, July 28-30, 2015. |
[46] | C. M. Topaz, A. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation, Bull. Math. Biol., 68 (2006), 1601-1623. doi: 10.1007/s11538-006-9088-6. |
[47] | T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229. doi: 10.1103/PhysRevLett.75.1226. |
[48] | T. Vicsek and A. Zefeiris, Collective motion, Physics Reports, 517 (2012), 71-140. |
[49] | L. Wang and F. Xiao, Finite-time consensus problems for networks of dynamic agents, IEEE Trans. Automat. Control, 55 (2010), 950-955. doi: 10.1109/TAC.2010.2041610. |
[50] | Q. Xiao, H. Liu, X. Wang and Y. Huang, A note on the fixed-time bipartite flocking for nonlinear multi-agent systems, Appl. Math. Lett., 99 (2020), 105973. doi: 10.1016/j.aml.2019.07.004. |
[51] | H. Zhang, P. Nie, Y. Sun and Y. Shi, Fixed-time flocking problem of a Cucker-Smale type self-propelled particle model, J. Franklin Inst., 357 (2020), 7054-7068. doi: 10.1016/j.jfranklin.2020.05.012. |
[52] | X. Zhang, H. Dai, L. Zhao, D. Zhao and Y. Sun, Collision avoiding finite-time and fixed-time flocking of Cucker-Smale systems with pinning control, Internat. J. Control, 95 (2022), 2045-2055. doi: 10.1080/00207179.2021.1892194. |
Trajectories of velocity
Evolutions of
Evolutions of
Evolutions of
Evolutions of