In this paper, the competition model with herd behavior and the Allee effect, which dynamics is described by the two-dimensional system of stochastic differential equations, is considered. We verify that the environmental noise included in the model provides a solution that is positive, global and bounded. Conditions under which the system is stable in some sense are presented. Finally, as an illustration, we apply our mathematical results for the prediction of time for which populations of the Asiatic black bear (Ursus thibetanus) and wild boar (Sus scrofa) in the Mount Jiri National Park, need to reach their equilibrium state.
Citation: |
[1] | P. Aguirre, J. D. Floral and E. Gonzalez-Olivares, Bifucations and global dynamics in a predator-prey model with a strong Allee effect on the prey, and a ration-dependent functional response, Nonlinear Anal. Real World Appl., 16 (2014), 235-249. doi: 10.1016/j.nonrwa.2013.10.002. |
[2] | V. Ajraldi, M. Pittavino and E. Venturino, Modeling herd behavior in population systems, Nonlinear Anal. Real World Appl., 12 (2011), 2319-2338. |
[3] | W. C. Allee, Animal Aggregations, A Study in General Sociology, University of Chicago Press, Chicago, 1931. doi: 10.5962/bhl.title.7313. |
[4] | I. Barbalat, Systems d'equations differentielles d'oscillations nonlinearies, Rev. Roum. Math. Pure Appl., 4 (1959), 267-270. |
[5] | A. Borzeè, Y. Yi, D. Andersen, K. Kim, K. S. Moon, J. J. Kim, T. W. Kim and J. Yikweon, First dispersal event of a reintroduced Asiatic black bear (Ursus thibetanus) in Korea, Russian Journal of Theriology, 18 (2019), 51-55. |
[6] | I. M. Bulai and E. Venturino, Shape effects on herd behavior in ecological interacting population models, Math. Comput. Simulat., 141 (2017), 40-55. doi: 10.1016/j.matcom.2017.04.009. |
[7] | A. Deredec and F. Courchamp, Importance of the Allee effect for reintroductions, Ecoscience, 14 (2007), 440-451. |
[8] | J. Golec and S. Sathananthan, Stability Analysis of a Stochastic Logistic Model, Math. Comput. Model., 38 (2003), 585-593. doi: 10.1016/S0895-7177(03)90029-X. |
[9] | W. D. Hamilton, Geometry for the selfish herd, J. Theor. Biol., 31 (1971), 295-311. |
[10] | R. Z. Has'minskii, Stochastic Stability of Differential Equations, Sijthoof and Noordhoof, Aplohen aan der Rijn, The Nederlands, 1980. |
[11] | D. J. Higham, An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations, SIAM Rev., 43 (2001), 525-546. doi: 10.1137/S0036144500378302. |
[12] | J. A. Hutchings, Thresholds for impaired species recovery, Proc. R. Soc. B, 282 (2015), 20150654. |
[13] | IUCN 2019. The IUCN Red List of Threatened Species, Version 2019-3., 2019. Available from: http://www.iucnredlist.org. |
[14] | International Bear News, August 2005. Available from: http://www.bearbiology.org/wp-content/uploads/2017/10/IBN_August_2005.pdf. |
[15] | M. Jovanović and M. Krstić, The influence of time dependent delay on behavior of stochastic population model with the Allee effect, Appl. Math. Model., 39 (2015), 733-746. doi: 10.1016/j.apm.2014.06.019. |
[16] | I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2nd edition, Springer-Verlag, Berlin, 1991. doi: 10.1007/978-1-4612-0949-2. |
[17] | Y. Kim, S. Cho and Y. Choung, Habitat preference of wild boar (Sus scrofa) for feeding in cool-temperate forests, J. Ecology Environ., 43 (2019). |
[18] | S. A. Kolchin, Feeding Associations between the Asiatic Black Bear (Ursus thibetanus) and the Wild Boar (Sus scrofa) in the Sikhote-Alin Mountains, Biol. Bull., 45 (2018), 751-755. |
[19] | M. Krstić and M. Jovanović, On stochastic population model with the Allee effect, Math. Comput. Model., 52 (2010), 370-379. doi: 10.1016/j.mcm.2010.02.051. |
[20] | C. R. Krull, M. C. Stanley, B. R. Burns, D. Choquenot and T. R. Etherington, Reducing wildlife damage with cost-effective management programmes, PLoS ONE, 11 (2016), e0146765. |
[21] | H. Lee, D. Garshelis, U. S. Seal and J. Shillcox, Asiatic Black Bears PHVA, Final Report for Workshop Held, Seoul, Korea, 2001. |
[22] | Q. Liu, D. Jiang, T. Hayat and A. Alsaedi, Stacionary distribution and extinction of a stochastic predator-prey model with herd behavior, J. Franklin Inst., 355 (2018), 8177-8193. doi: 10.1016/j.jfranklin.2018.09.013. |
[23] | A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore, MD, 1924. |
[24] | X. Mao, Stochastic Differential Equations and Applications, 2nd edition, Horwood, Chichester, 2008. doi: 10.1533/9780857099402. |
[25] | X. Mao, Stochastic version of the LaSalle theorem, J. Differential Equations, 153 (1999), 175-195. doi: 10.1006/jdeq.1998.3552. |
[26] | N. Martinez-Jeraldo and P. Aguirre, Allee effect acting on the prey species in a Leslie-Gower predation model, Nonlinear Anal. Real World Appl., 45 (2019), 895-917. doi: 10.1016/j.nonrwa.2018.08.009. |
[27] | D. Melchionda, E. Pastacaldi, C. Perri, M. Benerjee and E. Venturino, Social behavior-induced multistability in minimal competative ecosystems, J. Theor. Biol., 439 (2018), 24-38. doi: 10.1016/j.jtbi.2017.11.016. |
[28] | D. Melchionda, E. Pastacaldi, C. Perri and E. Venturino, Interacting population models with pack behavior, preprint, 2014, arXiv: 1403.4419v1. |
[29] | J. A. Oguntuase, On integral inequalities of Gronwall-Bellman-Bihari type in several variables, J. Ineq. Pure Appl. Math., 1 (2000), Article 20, 7 pp. |
[30] | P. Sen, A. Maiti and G. P. Samanta, A Competition Model with Herd Behaviour and Allee Effect, Filomat, 33 (2019), 2529-2542. doi: 10.2298/FIL1908529S. |
[31] | D. J. Song, Restoration Ecology of the Ussuri Black Bear (Ursus thibetanus ussuricus) at Jiri-san, 2020. Available from: http://dcollection.kangwon.ac.rs/common/orgView/000000031173. |
[32] | G. Q. Sun, Mathematical modeling of population dynamics with Allee effect, Nonlinear Dyn., 85 (2016), 1-12. doi: 10.1007/s11071-016-2671-y. |
[33] | V. Volterra, Variazioni e fluttuazioni del numero d'individui in specie d'animali conviventi, Mem. Acad. Lincei, 2 (1926), 31-113. |
[34] | G. Wang, X. G. Liang and F. Z. Wang, The competitive dynamics of populations subjected to an Allee effect, Ecol. Model., 124 (1999), 183-192. |
[35] | Q. Yang and D. Jiang, A note on asymptotic behaviors of stochastic population model with Allee effect, Appl. Math. Model., 35 (2011), 4611-4619. doi: 10.1016/j.apm.2011.03.034. |
[36] | H. Zhiyuan, A comparison theorem for solutions of stochastic differential equations and its applications, Proc. Amer. Math. Soc., 91 (1984), 611-617. doi: 10.1090/S0002-9939-1984-0746100-9. |
The mean value of
The mean values of twenty stochastic trajectories of the system (2) with the parameters (29), when
Deterministic and twenty stochastic trajectories of the system (2) with the parameters (30)