This manuscript investigates a dynamical system in which $ 2N $ primary particles of equal masses move in space under Newton's law of gravitation forming the vertices of antiprisms while a particle of negligible mass moves along the common axis of symmetry of the antiprisms. This $ n $-body problem that we call the restricted hip-hop $ (2N + 1) $-body problem is an extension of the generalized Sitnikov problem studied in [17] for which the primaries remain in a plane. This work also relies on an early study [14] where certain families of periodic hip-hop solutions to a $ 2N $–body problem were constructed. We prove the existence of a continuous symmetric family of solutions of the restricted hip-hop $ (2N+1) $-body problem for each family of symmetric and periodic hip-hop solutions of the primaries studied in [14]. The main tools for proving our results are the implicit function theorem and a compactness argument. In addition, we present some numerical periodic solutions to the restricted $ 7 $-body problem.
Citation: |
[1] | V. M. Alekseev, Quasirandom dynamical systems II, Mat. Zametki, 6 (1969), 489-498. |
[2] | V. I. Arnold, V. Kozlov and A. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, 3$^{rd}$ edition, Springer, 2006. |
[3] | E. Barrabes and J. Cors, Highly eccentricity hip-hop solutions of the $2N$-body problem, Physica. D, 239 (2010), 214-219. doi: 10.1016/j.physd.2009.10.019. |
[4] | E. Barrabes, J. Cors, C. Pinyol and J. Soler, Hip-hop solutions of the $2N$-body problem, Celestial Mech. Dynam. Astronom., 95 (2006), 55-66. doi: 10.1007/s10569-006-9016-y. |
[5] | E. Belbruno, J. Llibre and M. Ollé, On the families of periodic orbits which bifurcate from the circular Sitnikov motions, Celestial Mech. Dynam. Astronom., 60 (1994), 99-129. doi: 10.1007/BF00693095. |
[6] | A. Chenciner and A. Venturelli, Minima de l'intégrale d'action du problème newtonien de $4$ corps de masses égales dans $\mathbb{R}^3$: orbites "hip-hop", Celestial Mech. Dynam. Astronom., 77 (2000), 139-152. doi: 10.1023/A:1008381001328. |
[7] | M. Corbera and J. Llibre, Periodic orbits of the Sitnikov problem via a Poincaré map, Celestial Mech. Dynam. Astronom., 77 (2000), 273-303. doi: 10.1023/A:1011117003713. |
[8] | M. Corbera and J. Llibre, On symmetric periodic orbits of the elliptic Sitnikov problem via the analytic continuation method, Contemporay Mathematics, 292 (2002), 91-127. doi: 10.1090/conm/292/04918. |
[9] | D. L. Ferrario and S. Terracini, On the existence of collisionless equivariant minimizers for the classical $n$-body problem, Invent. Math., 155 (2004), 305-362. doi: 10.1007/s00222-003-0322-7. |
[10] | L. Jiménez-Lara and A. Escalona-Buendía, Symmetries and bifurcations in the Sitnikov problem, Celestial Mech. Dynam. Astronom., 79 (2001), 97-117. doi: 10.1023/A:1011109827402. |
[11] | J. Llibre and R. Ortega, On the families of periodic orbits of the Sitnikov problem, SIAM J. Applied Dynamical Systems, 7 (2008), 561-576. doi: 10.1137/070695253. |
[12] | S. Mathlouthi, Periodic orbits of the restricted three-body problem, Trans. Amer. Math. Soc., 350 (1998), 2265-2276. doi: 10.1090/S0002-9947-98-01731-0. |
[13] | R. Ortega and A. Rivera, Global bifurcations from the center of mass in the Sitnikov problem, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 719-732. doi: 10.3934/dcdsb.2010.14.719. |
[14] | O. Perdomo, A. Rivera, J. Arredondo and N. Castañeda, Periodic oscillations in a $2N$ body problem, to appear, SIAM J. Applied Dynamical Systems. |
[15] | O. Perdomo, Embedded constant mean curvature hypersurfaces on spheres, Asian J. Math., 14 (2010), 73-108. doi: 10.4310/AJM.2010.v14.n1.a5. |
[16] | S. Terracini and A. Venturelli, Symmetric trayectories for the $2N$-body problem with equal masses, Arch. Rational Mech. Anal., 184 (2007), 465-493. doi: 10.1007/s00205-006-0030-8. |
[17] | A. Rivera, Periodic solutions in the generalized Sitnikov $N+1$-body problem, SIAM J. Applied Dyn. Syst., 12 (2013), 1515-1540. doi: 10.1137/120883876. |
[18] | R. Robinson, Uniform subaharmonic orbit for Sitnikov problem, Discrete Contin. Dyn. Syst. Ser. S., 1 (2008), 647-652. doi: 10.3934/dcdss.2008.1.647. |
[19] | D. J. Scheeres and J. Bellerose, The restricted Hill Full $4$-body problem: Application to spacraft motion about binary asteroids, Dyn.Syst.: An International Journal, 20 (2005), 23-44. doi: 10.1080/1468936042000281321. |
[20] | K. A. Sitnikov, Existence of oscillating motion for the three-body problem, Dokl. Akad. Nauk, 133 (1960), 303-306 (in Russian). |
Restricted Hip-hop 5-body problem with four primaries. At any time, the primaries are placed at the vertices of a regular
Graph of the
Image of the (6+1)-bodies for the solution given by the parameters
Graph of the
Image of the (6+1)-bodies for the solution given by the parameters