[1]
|
M. Ahmadinia and Z. Safari, Convergence nanalysis a local discontinuous Galerkin method for tempered fractional convection-diffusion equations, ESAIM Math. Model. Numer. Anal., 54 (2020), 59-78.
doi: 10.1051/m2an/2019052.
|
[2]
|
A. A. Alikhanov, A priori estimates for solutions of boundary value problem for fractional-order equations, Diff.Eq., 46 (2010), 660-666.
doi: 10.1134/S0012266110050058.
|
[3]
|
J. F. Allard, Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials, Chapman and Hall, London, 1993.
|
[4]
|
W. X. Cao, D. F. Li and Z. M. Zhang, Optimal Superconvergence of energy conserving local discontinuous Galerkin methods for wave equations, Commun. Comput. Phys., 21 (2017), 211-236.
doi: 10.4208/cicp.120715.100516a.
|
[5]
|
W. Cai, W. Chen, J. Fang and S. Holm, A survey on fractional derivative modeling of power-law frequency-dependent viscous dissipative and scattering attenuation in acoustic wave propagation, Appl. Mech. Rev., 70 (2018), 030802.
doi: 10.1115/1.4040402.
|
[6]
|
J. M. Carcione, F. Cavallini, F. Mainardi and A. Hanyga, Time-domain modeling of constant-Q seismic waves using fractional derivatives, Pure Appl. Geophys., 159 (2002), 1719-1736.
|
[7]
|
B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35 (1998), 2440-2463.
doi: 10.1137/S0036142997316712.
|
[8]
|
W. H. Deng and J. S. Hesthaven, Local discontinuous Galerkin methods for fractional diffusion equations, ESAIM Math. Model. Numer. Anal., 47 (2013), 1845-1864.
doi: 10.1051/m2an/2013091.
|
[9]
|
W. H. Deng and J. S. Hesthaven, Local discontinuous Galerkin methods for fractional ordinary differential equations, BIT Numer. Math., 55 (2015), 976-985.
doi: 10.1007/s10543-014-0531-z.
|
[10]
|
Y. W. Du, Y. Liu, H. Li, Z. C. Fang and S. He, Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation, J. Comput. Phys., 344 (2017), 108-126.
doi: 10.1016/j.jcp.2017.04.078.
|
[11]
|
L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, second edition, 2010.
doi: 10.1090/gsm/019.
|
[12]
|
Z. E. A. Fellah and C. Depollier, Transient acoustic wave propagation in rigid porous media: A time-domain approach, J. Comput. Acoust., 9 (2001), 1163-1173.
doi: 10.1142/S0218396X01000723.
|
[13]
|
Z. E. A. Fellah, M. Fellah, W. Lauriks, C. Depollier, J.-Y. Chapelon and Y. C. Angel, Solution in time domain of ultrasonic propagation equation in a porous material, Wave Motion, 38 (2003), 151-163.
doi: 10.1016/S0165-2125(03)00045-3.
|
[14]
|
Z. E. A. Fellah, F. G. Mitri, M. Fellah, E. Ogam and C. Depollier, Ultrasonic characterization of porous absorbing materials: Inverse problem, J. Sound Vibr., 302 (2007), 746-759.
|
[15]
|
R. Garra, Fractional-calculus model for temperature and pressure waves in fluid-saturated porous rocks, Phys. Rev. E, 84 (2011), 036605.
|
[16]
|
J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods. Algorithms, Analysis, and Applications, Texts in Applied Mathematics, 54. Springer, New York, 2008.
doi: 10.1007/978-0-387-72067-8.
|
[17]
|
S. Holm, Waves with Power-Law Attenuation, Springer, Berlin, 2019.
doi: 10.1007/978-3-030-14927-7.
|
[18]
|
S. Jiang, J. Zhang, Q. Zhang and Z. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys., 21 (2017), 650-678.
doi: 10.4208/cicp.OA-2016-0136.
|
[19]
|
B. Jin, R. Lazarov and Z. Zhou, An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data, IMA J. Numer. Anal., 36 (2016), 197-221.
doi: 10.1093/imanum/dru063.
|
[20]
|
X. Ji and H. Z.Tang, High-order accurate Runge-Kutta (local) discontinuous Galerkin methods for one-and two-dimensional fractional diffusion equations, Numer. Math. Theor. Meth. Appl., 5 (2012), 333-358.
doi: 10.4208/nmtma.2012.m1107.
|
[21]
|
D. L. Johnson, J. Koplik and R. Dashen, Theory of dynamic permeability and tortuosity in fluid-saturated porous media, J. Fluid. Mech., 176 (1987), 379-402.
|
[22]
|
J. F. Kelly, R. J. McGough and M. M. Meerschaert, Time-domain 3D Green's functions for power law media, J. Acoust. Soc. Am., 124 (2008), 2861-2872.
|
[23]
|
R. M. Kirby and G. E. Karniadakis, Selecting the numerical flux in discontinuous Galerkin methods for diffusion problems, J. Sci. Comput., 22/23 (2005), 385-411.
doi: 10.1007/s10915-004-4145-5.
|
[24]
|
C. Li, T. G. Zhao, W. H. Deng and Y. J. Wu, Orthogonal spline collocation methods for the subdiffusion equation, J. Comput. Appl. Math., 255 (2014), 517-528.
doi: 10.1016/j.cam.2013.05.022.
|
[25]
|
C. P. Li and Z. Wang, The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: Numerical analysis, Appl. Numer.Math., 140 (2019), 1-22.
doi: 10.1016/j.apnum.2019.01.007.
|
[26]
|
C. P. Li and F. H. Zeng, Numerical Methods for Fractional Calculus, CRC Press, Boca Raton, FL, 2015.
|
[27]
|
H.-L. Liao, D. Li and J. Zhang, Sharp error estimate of nonuniform L1 formula for time-fractional reaction-subdiffusion equations, SIAM J. Numer. Anal., 56 (2018), 1112-1133.
doi: 10.1137/17M1131829.
|
[28]
|
Y. M. Lin and C. J. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533-1552.
doi: 10.1016/j.jcp.2007.02.001.
|
[29]
|
F. Liu, M. M. Meerschaert, R. J. McGough, P. Zhuang and Q. Liu, Numerical methods for solving the multi-term time-fractional wave diffusion equation, Fract. Calc. Appl. Anal., 16 (2013), 9-25.
doi: 10.2478/s13540-013-0002-2.
|
[30]
|
F. W. Liu, P. H. Zhuang and Q. X. Liu, The Applications and Numerical Methods of Fractional Differential Equations, Science Press, Beijing, 2015.
|
[31]
|
Y. Liu, M. Zhang, H. Li and J. C. Li, High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional subdiffusion equation, Comput. Math. Appl., 73 (2017), 1298-1314.
doi: 10.1016/j.camwa.2016.08.015.
|
[32]
|
Ch. Lubich, Discretized fractional calculus, SIAM J Math Anal., 17 (1986), 704-719.
doi: 10.1137/0517050.
|
[33]
|
F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models,, Imperial College Press, London, 2010.
doi: 10.1142/9781848163300.
|
[34]
|
M. M. Meerschaert and R. J. McGough, Attenuated fractional wave equations with anisotropy, ASME J. Vib. Acoust., 136 (2014), 050902.
|
[35]
|
J. Q. Murillo and S. B. Yuste, On three explicit difference schemes for fractional diffusion and diffusion-wave equations, Phys. Scr., 136 (2009), 14025-14030.
|
[36]
|
K. Mustapha and W. McLean, Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation, Numer. Algorithms, 56 (2010), 159-184.
doi: 10.1007/s11075-010-9379-8.
|
[37]
|
I. Podlubny, Fractional Differential Equations, Academic Press, an Diego, 1999.
|
[38]
|
A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, 23. Springer-Verlag, Berlin, 1994.
|
[39]
|
C.-W. Shu, High order WENO and DG methods for time-dependent convection-dominated PDEs: a brief survey of several recent developments, J. Comput. Phys., 316 (2016), 598-613.
doi: 10.1016/j.jcp.2016.04.030.
|
[40]
|
X. R. Sun, C. Li and F. Q. Zhao, Local discontinuous Galerkin methods for the time tempered fractional diffusion equation, Appl. Math. Comput., 365 (2020), 124725.
doi: 10.1016/j.amc.2019.124725.
|
[41]
|
Z. Z. Sun and X. N. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56 (2006), 193-209.
doi: 10.1016/j.apnum.2005.03.003.
|
[42]
|
T. L. Szabo, Causal theories and data for acoustic attenuation obeying a frequency power-law, J. Acoust. Soc. Am., 97 (1995), 14-24.
|
[43]
|
W. Y. Tian, H. Zhou and W. H. Deng, A class of second order difference approximations for solving space fractional diffusion equations, Math. Comput., 84 (2015), 1703-1727.
doi: 10.1090/S0025-5718-2015-02917-2.
|
[44]
|
L. L. Wei, X. D. Zhang, Y. N. He and S. Wang, Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Schr ödinger equation, Finite Elem. Anal. Desi., 59 (2012), 28-34.
doi: 10.1016/j.finel.2012.03.008.
|
[45]
|
D. K. Wilson, V. E. Ostashev, S. L. Collier, N. P. Symons, D. F. Aldridge and D. H. Marlin, Time-domain calculations of sound interactions with outdoor ground surfaces, Applied Acoustics, 68 (2007), 173-200.
|
[46]
|
Y. Xing, C.-S. Chou and C.-W. Shu, Energy conserving local discontinuous Galerkin methods for wave propagation problems, Inverse Probl. Imaging, 7 (2013), 967-986.
doi: 10.3934/ipi.2013.7.967.
|
[47]
|
Q. Xu and J. S. Hesthaven, Discontinuous Galerkin method for fractional convection-diffusion equations, SIAM J. Numer.Anal., 52 (2014), 405-423.
doi: 10.1137/130918174.
|
[48]
|
Y. Xu and C.-W. Shu, Local discontinuous Galerkin methods for high-order time-dependent partial differential equations, Comm. Comput. Phys., 7 (2010), 1-46.
doi: 10.4208/cicp.2009.09.023.
|
[49]
|
M. Zhang, Y. Liu and H. Li, High order local discontinuous Galerkin algorithm with time second-order schemes for the two-dimensional nonlinear fractional diffusion equation, Commun. Appl. Math. Comput., 2 (2020), 613-640.
doi: 10.1007/s42967-019-00058-1.
|
[50]
|
Q. Zhang, J. W. Zhang, S. D. Jiang and Z. M. Zhang, Numerical solution to a linearized time fractional KdV equation on unbounded domains, Math. comput., 87 (2018), 693-719.
doi: 10.1090/mcom/3229.
|