In a spatially heterogeneous environment the propagation speed of a biological invasion varies in space. The traveling wave theory in a homogeneous case is not extended to a heterogeneous case. Taking a singular limit in a hyperbolic scale is a good way to study such a wave propagation with constant speed. The goal of this project is to understand the effect of biological diffusion on the wave speed in a spatial heterogeneous environment. For this purpose, we consider
$ U_t = {\varepsilon}(\gamma(s)U)_{xx}+{1\over{\varepsilon}}U(1-{U/m(x)}), $
where $ m $ is a nonconstant carrying capacity, $ s = {U\over m} $ is a starvation measure and $ \gamma(s) = s^{\tilde{k}}, \tilde{k} \ge 1 $. The diffusion is a starvation driven diffusion. We show that the diffusion speed is constant even if $ m $ is nonconstant.
Citation: |
Figure 2. Numerical simulation of (7) and (IP). The black line indicates the curve which moves according to (IP) and other colors indicates the values of the function $ u^{\varepsilon} = U^{\varepsilon}/m $. The yellow color indicates that the solution is close to 1 and the blue color indicates that the solution is equal to 0
[1] |
M. Alfaro, D. Hilhorst and H. Matano, The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system, J. Differential Equations, 245 (2008), 505-565.
doi: 10.1016/j.jde.2008.01.014.![]() ![]() ![]() |
[2] |
M. Alfaro and E. Logak, Convergence to a propagating front in a degenerate Fisher-KPP equation with advection, J. Math. Anal. Appl., 387 (2012), 251-266.
doi: 10.1016/j.jmaa.2011.08.068.![]() ![]() ![]() |
[3] |
A. Audrito and J. L. Vázquez, The Fisher-KPP problem with doubly nonlinear diffusion, J. Differential Equations, 263 (2017), 7647-7708.
doi: 10.1016/j.jde.2017.08.025.![]() ![]() ![]() |
[4] |
Z. Biró, Stability of travelling waves for degenerate reaction-diffusion equations of KPP-type, Advanced Nonlinear Studies, 2 (2002), 357-371.
doi: 10.1515/ans-2002-0402.![]() ![]() ![]() |
[5] |
B. Cho and Y.-J. Kim, Diffusion of biological organisms: Fickian and Fokker-Planck type diffusions, SIAM J. Appl. Math., 79 (2019), 1501-1527.
doi: 10.1137/18M1163944.![]() ![]() ![]() |
[6] |
E. Cho and Y.-J. Kim, Starvation driven diffusion as a survival strategy of biological organisms, Bull. Math. Biol., 75 (2013), 845-870.
doi: 10.1007/s11538-013-9838-1.![]() ![]() ![]() |
[7] |
J. Chung, Y.-J. Kim, O. Kwon and C. W. Yoon, Biological advection and cross-diffusion with parameter regimes, AIMS Mathematics, 4 (2019), 1721-1744.
doi: 10.3934/math.2019.6.1721.![]() ![]() ![]() |
[8] |
L. Desvillettes, Y.-J. Kim, A. Trescases and C. Yoon, A logarithmic chemotaxis model featuring global existence and aggregation, Nonlinear Analysis: Real World Applications, 50 (2019), 562-582.
doi: 10.1016/j.nonrwa.2019.05.010.![]() ![]() ![]() |
[9] |
R. A. Fisher, The wave of advance of advantageous genes, Annals of Eugenics, 7 (1937), 355-369.
doi: 10.1111/j.1469-1809.1937.tb02153.x.![]() ![]() |
[10] |
M. E. Gurtin and R. C. Maccamy, On the diffusion of biological populations, Math. Biosci., 33 (1977), 35-49.
doi: 10.1016/0025-5564(77)90062-1.![]() ![]() ![]() |
[11] |
D. Hilhorst, R. Kersner, E. Logak and M. Mimura, Interface dynamics of the Fisher equation with degenerate diffusion, J. Differential Equations, 244 (2008), 2870-2889.
doi: 10.1016/j.jde.2008.02.018.![]() ![]() ![]() |
[12] |
D. Hilhorst, Y.-J. Kim, D. Kwon and T. Nam Nguyen, Dispersal towards food: The singular limit of an Allen-Cahn equation, J. Math. Biol., 76 (2018), 531-565.
doi: 10.1007/s00285-017-1150-5.![]() ![]() ![]() |
[13] |
M. Morishita, Measuring of habitat value by the environmental density method, Statistical Ecology, 1 (1971), 379-401.
![]() |
[14] |
M. Muskat, The flow of homogeneous fluids through porous media, Soil Science, 46 (1938), p169.
doi: 10.1097/00010694-193808000-00008.![]() ![]() |
[15] |
A. Okubo and S. A. Levin, Diffusion and Ecological Problems: Modern Perspectives, second ed., Interdisciplinary Applied Mathematics, vol. 14, Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4757-4978-6.![]() ![]() ![]() |
[16] |
H. Seo and Y.-J. Kim, Model for heterogeneous diffusion, SIAM Appl. Math., 81 (2021), 335-354.
doi: 10.1137/19M130087X.![]() ![]() ![]() |
[17] |
H. Seo and Y.-J. Kim, Wave propation in heterogeneous environment, J. Theor. Biol., (2019).
![]() |
[18] |
N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, Journal of Theoretical Biology, 79 (1979), 83-99.
doi: 10.1016/0022-5193(79)90258-3.![]() ![]() ![]() |
[19] |
J. G. Skellam, Random dispersal in theoretical populations, Biometrika, 38 (1951), 196-218.
doi: 10.1093/biomet/38.1-2.196.![]() ![]() ![]() |
[20] |
J. G. Skellam, Some phylosophical aspects of mathematical modelling in empirical science with special reference to ecology, Mathematical Models in Ecology, Blackwell Sci. Publ., London, 1972.
![]() |
[21] |
J. G. Skellam, The Formulation and Interpretation of Mathematical Models of Diffusionary Processes in Population Biology, The mathematical theory of the dynamics of biological populations, Academic Press, New York, 1973.
![]() |
[22] |
N. Shigesada, Spatial distribution of dispersing animals, J. Math. Biol., 9 (1980), 85-96.
doi: 10.1007/BF00276037.![]() ![]() ![]() |
[23] |
H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Transactions of the American Mathematical Society, American Mathematical Society, 36 (1934), 63-89.
doi: 10.1090/S0002-9947-1934-1501735-3.![]() ![]() ![]() |
[24] |
J. L. Vázquez, The Porous Medium Equation: Mathematical Theory, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007.
![]() ![]() |
A linearly connected patch system is viewed as a general diffusion in
Numerical simulation of (7) and (IP). The black line indicates the curve which moves according to (IP) and other colors indicates the values of the function