\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Singular perturbation approach to a plankton model generating harmful algal bloom

Dedicated to the memory of Professor Masayasu Mimura

This work is supported in part by JSPS KAKENHI, Grant Numbers JP15K04995 and JP19K03618.

Abstract / Introduction Full Text(HTML) Figure(12) Related Papers Cited by
  • Spatially localized blooms of toxic plankton species have negative effects on other organisms owing to the production of toxins, mechanical damage, or other means. A two-prey (toxic and nontoxic phytoplankton) one-predator (zooplankton) Lotka–Volterra system with diffusion has been presented to understand the mechanism underlying the formation of spatial blooms of toxic plankton. In this study, we consider a one-dimensional (1D) system in which the ratio $ D $ of the diffusion rates of the predator and two prey, and the length of the spatial interval $ L $ are both sufficiently large while maintaining $ L^2/D $ as a constant. This system is reduced to a singularly perturbed system. The existence and stability properties of the 1D blooming stationary solutions are demonstrated by improving the previous results.

    Mathematics Subject Classification: Primary: 35B32, 35B35, 35B36, 35K57; Secondary: 35Q92.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  1D blooming stationary solution $ u_1(x;\varepsilon), u_2(x;\varepsilon) $, and $ v(x;\varepsilon) $ of (9) with sharp internal transition layer at $ x = \ell(\varepsilon) $ for $ a = 0.95, b = 1.2, K = 2.9, R = 0.43, d = 2/3, \mu = 0.5, D = 5.0 $, and $ \varepsilon = 0.05 $

    Figure 2.  Outer approximations $ U_1(x;\omega), U_2(x;\omega) $, and $ V(x;\omega) $. $ U_1(x;\omega) $ and $ U_2(x;\omega) $ have a discontinuous point at $ x = \ell(\omega) $

    Figure 3.  Nullclines of two curves

    Figure 4.  The solution $ V(x;\omega^*) \ ( x \in (0, 1)) $ of (13) with $ D = 5.0, \mu = 0.2, d = 1/(1+\mu) = 5/6, R = 0.43 $, and $ K = 2.9 $ (in red) uses both of the monotonically decreasing branches $ y = h_1(V) \ (V \leqq \omega^*) $ and $ y = h_2(V) \ ( V \geqq \omega^*) $, where $ \omega^* = 0.42731 $ and $ \ell^* = 0.324 $

    Figure 5.  The solution $ V(x;\omega^*) \ (x \in (0, 1)) $ of (13) with $ D = 5.0, \mu = 0.5, d = 1/(1+\mu) = 2/3, R = 0.43 $, and $ K = 2.9 $ (in red) uses the monotonically decreasing branch $ y = h_1(V) \ (V \leqq \omega^*) $ but the monotonically increasing branch $ y = h_2(V) \ ( V \geqq \omega^*) $, where $ \omega^* = 0.272147 $ and $ \ell^* = 0.3390 $

    Figure 6.  The solution $ \eta_2(x) $ of (18) on $ [\ell^*, 1] $ with $ D = 5.0, K = 2.9 $, and $ R = 0.43 $, where $ \omega^* = 0.272147 $ and $ \ell^* = 0.3390 $

    Figure 7.  Spatial profiles of four cases of solutions $ z^{(i)}_N(x) $ (in red) and $ z^{(i)}_D(x) $ (in black) $ (i = 1, 2) $

    Figure 8.  Profiles of function $ det^*(x) $ for cases (Ⅰ) and (Ⅱ). In case (Ⅰ), $ det^*(x) < 0 $ on $ I_1 $ and $ I_2 $. In case (Ⅱ), $ det^*(x) < 0 $ on $ I_1 $ and $ det^*(x) > 0 $ on $ I_2 $

    Figure 9.  Profile of solution $ z_N(x) $ for boundary value problem of first three equations of (33) on $ I $ of case (Ⅱ)

    Figure 10.  Solution trajectories of (a) (38) and (b) (39)

    Figure 11.  The unstable manifold of $ (0, 0) $ for (38) meets the stable manifold of $ (1-\frac 1K) $ for (39) at $ V = V^* $

    Figure 12.  Solution trajectories on composite phase plane at $ V = \omega $: (a) $ 0 < \omega \leqq V^* $ and (b) $ V^* < \omega < 1-\frac 1K $

  • [1] I. R. Falconer and A. R. Humpage, Tumor promotion by cyanobacterial toxins, Phycologia, 35 (1996), 74-79. 
    [2] P. C. Fife, Boundary and interior transition layer phenomena for pairs of second-order differential equations, J. Math. Anal. Appl., 54 (1976), 497-521.  doi: 10.1016/0022-247X(76)90218-3.
    [3] G. E. Hutchinson, The paradox of the plankton, Am. Nat., 95 (1961), 137-145.  doi: 10.1086/282171.
    [4] H. Ikeda, Global bifurcation phenomena of standing pulse solutions for three-component systems with competition and diffusion, Hiroshima Math. J., 32 (2002), 87-124. 
    [5] H. IkedaM. Mimura and T. Scotti, Shadow system approach to a plankton model generating harmful algal bloom, Discrete Contin. Dyn. Syst., 37 (2017), 829-858.  doi: 10.3934/dcds.2017034.
    [6] E. M. Jochimsen, et al., Liver failure and death after exposure to microcystins at at a hemodialysis center in Brazil, N. Engl. J. Med., 338 (1998), 873-878.
    [7] Y. Kan-on, Parameter dependence of propagation speed of travelling waves for competition-diffusion equations, SIAM J. Math. Anal., 26 (1995), 340-363.  doi: 10.1137/S0036141093244556.
    [8] Y. Kan-on and E. Yanagida, Existence of non-constant stable equilibria in competition-diffusion equations, Hiroshima Math. J., 23 (1993), 193-221. 
    [9] W. E. A. Kardinaal, et al., Competition for light between toxic and nontoxic strains of the harmful cyanobacterium Microcystis, Appl. Environ. Microbiol., 73 (2007), 2939-2946.
    [10] W. Lampert, Inhibitory and toxic effects of blue-green algae on Daphnia, Int. Revue ges. Hydrobiol., 66 (1981), 285-298. 
    [11] W. Lampert, Further studies on the inhibitory effect of the toxic blue-green Microcystis aeruginosa on the filtering rate of zooplankton, Arch. Hydrobiol., 95 (1982), 207-220. 
    [12] M. Mimura and P. C. Fife, A 3-component system of competition and diffusion, Hiroshima Math. J., 16 (1986), 189-207. 
    [13] M. MimuraM. Tabata and Y. Hosono, Multiple solutions of two-point boundary value problems of Neumann type with a small parameter, SIAM J. Math. Anal., 11 (1980), 613-631.  doi: 10.1137/0511057.
    [14] Y. Nishiura and H. Fujii, Stability of singularly perturbed solutions to systems of reaction-diffusion equations, SIMA J. Math. Anal., 18 (1987), 1726-1770.  doi: 10.1137/0518124.
    [15] T. ScottiM. Mimura and J. Y. Wakano, Avoiding toxic prey may promote harmful algal blooms, Ecol. Complex., 21 (2015), 157-165.  doi: 10.1016/j.ecocom.2014.07.004.
    [16] J. A. Smoller and A. Wasserman, Global bifurcation of steady-state solutions, J. Differ. Equations, 39 (1981), 269-290.  doi: 10.1016/0022-0396(81)90077-2.
  • 加载中
Open Access Under a Creative Commons license

Figures(12)

SHARE

Article Metrics

HTML views(1910) PDF downloads(423) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return