\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Splitting schemes for FitzHugh–Nagumo stochastic partial differential equations

  • *Corresponding author: Charles-Edouard Bréhier

    *Corresponding author: Charles-Edouard Bréhier 
Abstract / Introduction Full Text(HTML) Figure(2) Related Papers Cited by
  • We design and study splitting integrators for the temporal discretization of the stochastic FitzHugh–Nagumo system. This system is a model for signal propagation in nerve cells where the voltage variable is the solution of a one-dimensional parabolic PDE with a cubic nonlinearity driven by additive space-time white noise. We first show that the numerical solutions have finite moments. We then prove that the splitting schemes have, at least, the strong rate of convergence $ 1/4 $. Finally, numerical experiments illustrating the performance of the splitting schemes are provided.

    Mathematics Subject Classification: Primary: 60H35, 65C30, 60H15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Space-time evolution plots of $ u $ and $ v $ using the Lie–Trotter splitting schemes LTexact, LTexpo, and LTimp

    Figure 2.  Mean-square errors as a function of the time step: Lie–Trotter splitting schemes, $ \phi_\tau = \phi_\tau^{\rm L}\circ\phi_\tau^{\rm NL} $ (top) and $ \phi_\tau = \phi_\tau^{\rm NL}\circ\phi_\tau^{\rm L} $ (bottom), ($ \diamond $ for LTexact, $ \square $ for LTexpo, ☆ for LTimp). The dotted lines have slopes $ 1/2 $ and $ 1/4 $

  • [1] M. Ableidinger and E. Buckwar, Splitting integrators for the stochastic Landau-Lifshitz equation, SIAM J. Sci. Comput., 38 (2016), A1788-A1806.  doi: 10.1137/15M103529X.
    [2] A. Alamo and J. M. Sanz-Serna, A technique for studying strong and weak local errors of splitting stochastic integrators, SIAM J. Numer. Anal., 54 (2016), 3239-3257.  doi: 10.1137/16M1058765.
    [3] M. Beccari, M. Hutzenthaler, A. Jentzen, R. Kurniawan, F. Lindner and D. Salimova, Strong and weak divergence of exponential and linear-implicit Euler approximations for stochastic partial differential equations with superlinearly growing nonlinearities, arXiv, 2019.
    [4] A. Berg, D. Cohen and G. Dujardin, Lie-Trotter splitting for the nonlinear stochastic Manakov system, J. Sci. Comput., 88 (2021), Paper No. 6, 31pp. doi: 10.1007/s10915-021-01514-y.
    [5] S. Blanes and F. Casas, A Concise Introduction to Geometric Numerical Integration, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2016.
    [6] M. BoulakiaA. Genadot and M. Thieullen, Simulation of SPDEs for excitable media using finite elements, J. Sci. Comput., 65 (2015), 171-195.  doi: 10.1007/s10915-014-9960-8.
    [7] N. Bou-Rabee and H. Owhadi, Long-run accuracy of variational integrators in the stochastic context, SIAM J. Numer. Anal., 48 (2010), 278-297.  doi: 10.1137/090758842.
    [8] C.-E. Bréhier, A Short Introduction to Stochastic PDEs, HAL, 2014.
    [9] C.-E. Bréhier, Analysis of a modified Euler scheme for parabolic semilinear stochastic PDEs, arXiv, 2022.
    [10] C.-E. Bréhier and D. Cohen, Analysis of a splitting scheme for a class of nonlinear stochastic Schrödinger equations, Applied Numerical Mathematics, 186 (2023), 57-83.  doi: 10.1016/j.apnum.2023.01.002.
    [11] C.-E. Bréhier and D. Cohen, Strong rates of convergence of a splitting scheme for Schrödinger equations with nonlocal interaction cubic nonlinearity and white noise dispersion, SIAM/ASA J. Uncertain. Quantif., 10 (2022), 453-480.  doi: 10.1137/20M1378168.
    [12] C.-E. Bréhier, D. Cohen and T. Jahnke, Splitting integrators for stochastic Lie-Poisson systems, Math. Comp., to appear.
    [13] C.-E. BréhierJ. Cui and J. Hong, Strong convergence rates of semidiscrete splitting approximations for the stochastic Allen-Cahn equation, IMA J. Numer. Anal., 39 (2019), 2096-2134.  doi: 10.1093/imanum/dry052.
    [14] C.-E. Bréhier and L. Goudenège, Analysis of some splitting schemes for the stochastic Allen-Cahn equation, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 4169-4190.  doi: 10.3934/dcdsb.2019077.
    [15] C.-E. Bréhier and L. Goudenège, Weak convergence rates of splitting schemes for the stochastic Allen-Cahn equation, BIT, 60 (2020), 543-582.  doi: 10.1007/s10543-019-00788-x.
    [16] E. BuckwarA. SamsonM. Tamborrino and I. Tubikanec, A splitting method for SDEs with locally lipschitz drift: Illustration on the FitzHugh-Nagumo model, Applied Numerical Mathematics, 179 (2022), 191-220.  doi: 10.1016/j.apnum.2022.04.018.
    [17] S. Cerrai, Second Order PDE's in Finite and Infinite Dimension, volume 1762 of Lecture Notes in Mathematics., Springer-Verlag, Berlin, 2001. doi: 10.1007/b80743.
    [18] D. Cohen and G. Vilmart, Drift-preserving numerical integrators for stochastic Poisson systems, Int. J. Comput. Math., 99 (2022), 4-20.  doi: 10.1080/00207160.2021.1922679.
    [19] S. Cox and J. van Neerven, Convergence rates of the splitting scheme for parabolic linear stochastic Cauchy problems, SIAM J. Numer. Anal., 48 (2010), 428-451.  doi: 10.1137/090761835.
    [20] J. CuiJ. HongZ. Liu and W. Zhou, Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equations, J. Differential Equations, 266 (2019), 5625-5663.  doi: 10.1016/j.jde.2018.10.034.
    [21] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, volume 152 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, second edition, 2014. doi: 10.1007/CBO9781107295513.
    [22] R. Duboscq and R. Marty, Analysis of a splitting scheme for a class of random nonlinear partial differential equations, ESAIM Probab. Stat., 20 (2016), 572-589.  doi: 10.1051/ps/2016023.
    [23] W. Grecksch and H. Lisei, Approximation of stochastic nonlinear equations of Schrödinger type by the splitting method, Stoch. Anal. Appl., 31 (2013), 314-335.  doi: 10.1080/07362994.2013.759745.
    [24] I. GyöngyS. Sabanis and D. Šiška, Convergence of tamed Euler schemes for a class of stochastic evolution equations, Stoch. Partial Differ. Equ. Anal. Comput., 4 (2016), 225-245.  doi: 10.1007/s40072-015-0057-7.
    [25] E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, volume 31 of Springer Series in Computational Mathematics., Springer, Heidelberg, 2010. Structure-preserving algorithms for ordinary differential equations, Reprint of the second (2006) edition.
    [26] A. Jentzen and P. E. Kloeden, Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space-time noise, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 465 (2009), 649-667.  doi: 10.1098/rspa.2008.0325.
    [27] D. Khoshnevisan, Analysis of Stochastic Partial Differential Equations, CBMS Regional Conference Series in Mathematics, 119, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2014. doi: 10.1090/cbms/119.
    [28] B. Leimkuhler and C. Matthews, Molecular Dynamics, volume 39 of Interdisciplinary Applied Mathematics, Springer, Cham, 2015. With deterministic and stochastic numerical methods.
    [29] B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics, volume 14 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, 2004.
    [30] T. Li, K. Wu, M. Yan, Z. Liu and H. Zheng, Stochastic dynamic behavior of FitzHugh-Nagumo neurons stimulated by white noise, Internat. J. Modern Phys. B, 35 (2021), Paper No. 2150137, 24pp. doi: 10.1142/S021797922150137X.
    [31] B. LindnerJ. Garcıa-OjalvoA. Neiman and and L. Schimansky-Geier, Effects of noise in excitable systems, Physics Reports, 392 (2004), 321-424.  doi: 10.1016/j.physrep.2003.10.015.
    [32] J. Liu, A mass-preserving splitting scheme for the stochastic Schrödinger equation with multiplicative noise, IMA J. Numer. Anal., 33 (2013), 1469-1479.  doi: 10.1093/imanum/drs051.
    [33] Y. Lv and W. Wang, Limit dynamics for the stochastic FitzHugh-Nagumo system, Nonlinear Anal. Real World Appl., 11 (2010), 3091-3105.  doi: 10.1016/j.nonrwa.2009.11.004.
    [34] R. Marty, On a splitting scheme for the nonlinear Schrödinger equation in a random medium, Commun. Math. Sci., 4 (2006), 679-705.  doi: 10.4310/CMS.2006.v4.n4.a1.
    [35] R. Marty, Local error of a splitting scheme for a nonlinear Schrödinger-type equation with random dispersion, Commun. Math. Sci., 19 (2021), 1051-1069.  doi: 10.4310/CMS.2021.v19.n4.a8.
    [36] R. I. McLachlan and G. R. W. Quispel, Splitting methods, Acta Numer., 11 (2002), 341-434.  doi: 10.1017/S0962492902000053.
    [37] T. Misawa, A Lie algebraic approach to numerical integration of stochastic differential equations, SIAM J. Sci. Comput., 23 (2001), 866-890.  doi: 10.1137/S106482750037024X.
    [38] D. Mishra, A. Yadav, S. Ray and P. K. Kalra, Effects of noise on the dynamics of biological neuron models, In A. Abraham, Y. Dote, T. Furuhashi, M. Köppen, A. Ohuchi, and Y. Ohsawa, editors, Soft Computing as Transdisciplinary Science and Technology, pages 61-69, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. doi: 10.1007/3-540-32391-0_14.
    [39] J. L. Padgett and Q. Sheng, Convergence of an operator splitting scheme for abstract stochastic evolution equations, Advances in Mathematical Methods and High Performance Computing, volume 41 of Adv. Mech. Math., Springer, Cham, 2019,163-179.
    [40] J. Printems, On the discretization in time of parabolic stochastic partial differential equations, M2AN Math. Model. Numer. Anal., 35 (2001), 1055-1078.  doi: 10.1051/m2an:2001148.
    [41] L. Qin, D. Ma and J. Shu, Wong-Zakai approximations and long term behavior of stochastic FitzHugh-Nagumo system, Int. J. Biomath., 14 (2021), Paper No. 2150008, 30pp. doi: 10.1142/S179352452150008X.
    [42] M. Sauer and W. Stannat, Lattice approximation for stochastic reaction diffusion equations with one-sided Lipschitz condition, Math. Comp., 84 (2015), 743-766.  doi: 10.1090/S0025-5718-2014-02873-1.
    [43] M. Sauer and W. Stannat, Analysis and approximation of stochastic nerve axon equations, Math. Comp., 85 (2016), 2457-2481.  doi: 10.1090/mcom/3068.
    [44] B. Spagnolo and E. V. Pankratova, Influence of noise sources on FitzHugh-Nagumo model in suprathreshold regime, In N. G. Stocks, D. Abbott and R. P. Morse, editors, Fluctuations and Noise in Biological, Biophysical, and Biomedical Systems Ⅲ, SPIE, 5841 (2005), 174-185.
    [45] M. Thieullen, Deterministic and stochastic FitzHugh-Nagumo systems, In Stochastic Biomathematical Models, volume 2058 of Lecture Notes in Math., Springer, Heidelberg, 2013,175-186. doi: 10.1007/978-3-642-32157-3_7.
    [46] H. C. Tuckwell, Analytical and simulation results for the stochastic spatial FitzHugh-Nagumo model neuron, Neural Comput., 20 (2008), 3003-3033.  doi: 10.1162/neco.2008.08-07-585.
    [47] H. C. Tuckwell, Stochastic partial differential equations in neurobiology: Linear and nonlinear models for spiking neurons, In Stochastic Biomathematical Models, volume 2058 of Lecture Notes in Math., pages 149-173. Springer, Heidelberg, 2013. doi: 10.1007/978-3-642-32157-3_6.
    [48] A. Yagi, Abstract Parabolic Evolution Equations and Their Applications, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04631-5.
    [49] M. E. YamakouT. D. TranL. H. Duc and J. Jost, The stochastic FitzHugh-Nagumo neuron model in the excitable regime embeds a leaky integrate-and-fire model, J. Math. Biol., 79 (2019), 509-532.  doi: 10.1007/s00285-019-01366-z.
  • 加载中

Figures(2)

SHARE

Article Metrics

HTML views(2295) PDF downloads(304) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return