Cross-diffusion may be an important driving force of pattern formation in population models. Recently, a relation between cross-diffusion and reaction-diffusion systems has been revealed from the mathematical modeling point of view. In this paper, we derive a predator–prey model with cross-diffusion from a simple reaction-diffusion system with two behavioral states in the predator population and examine whether cross-diffusion can induce spatial patterns in predator–prey models. We assume that the predators have identical behavioral characteristics except for their mobility and searching activity for preys: we consider two states, namely less mobile predators searching for preys more actively than mobile predators. Our analysis shows that cross-diffusion derived in this situation can induce spatial patterns if the prey-density-dependent conversion rate from less mobile state to mobile one increases more rapidly than that from mobile to less mobile at high prey density.
Citation: |
Figure 3. The graphs of $ \det M $ against $ \lambda_k $. The three graphs from bottom to top correspond to the cases where $ d_N = 0.05 $ (green), $ 0.1 $ (blue), and $ 0.15 $ (red), respectively. The other parameters are fixed at $ K = 4 $, $ \alpha = 5 $, $ \beta = 0.1 $, $ \gamma = 4 $, $ s = 1 $, $ a_1 = a_2 = 1 $, $ c_1 = c_2 = 1 $, $ r = 1 $, $ d_1 = 1 $, $ d_2 = 0 $. Note that the parameters yield $ N^* = 1 $ and the parameters $ K $, $ \alpha $, $ \beta $, and $ \gamma $ are the same as in Figure 2
Figure 5. Bifurcation diagram for $ d_1 = 1.0 $. The parameter values are fixed as (22). The horizontal axis is $ d_N $ and the vertical axis is the boundary value of stationary solutions $ N(x) $ at $ x = 0 $. The solid and the dashed curves respectively denote stable and unstable branches. The symbol $ \square $ indicates a pitchfork bifurcation point. Two solution profiles for $ d_N = 0.1 $ and $ d_N = 0.06 $ are displayed in the figure, where the red and the blue curves are respectively $ N $ and $ P $
[1] |
D. Alonso, F. Bartumeus and J. Catalan, Mutual interference between predators can give rise to Turing spatial patterns, Ecology, 83 (2002), 28-34.
![]() |
[2] |
M. Breden, L. Desvillettes and K. Fellner, Smoothness of moments of the solutions of discrete coagulation equations with diffusion, Monatsh. Math., 183 (2017), 437-463.
doi: 10.1007/s00605-016-0969-y.![]() ![]() ![]() |
[3] |
E. Brocchieri, L. Corrias, H. Dietert and Y.-J. Kim, Evolution of dietary diversity and a starvation driven cross-diffusion system as its singular limit, J. Math. Biol., 83 (2021), Paper No. 58.
doi: 10.1007/s00285-021-01679-y.![]() ![]() ![]() |
[4] |
J. A. Cañizo, L. Desvillettes and K. Fellner, Improved duality estimates and applications to reaction-diffusion equations, Commun. Partial Differ. Equ., 39 (2014), 1185-1204.
doi: 10.1080/03605302.2013.829500.![]() ![]() ![]() |
[5] |
F. Conforto and L. Desvillettes, Rigorous passage to the limit in a system of reaction-diffusion equations towards a system including cross diffusions, Commun. Math. Sci., 12 (2014), 457-472.
doi: 10.4310/CMS.2014.v12.n3.a3.![]() ![]() ![]() |
[6] |
F. Conforto, L. Desvillettes and C. Soresina, About reaction-diffusion systems involving the Holling-type Ⅱ and the Beddington–DeAngelis functional responses for predator–prey models, Nonlinear Differ. Equ. Appl., 25 (2018), Paper No. 24.
doi: 10.1007/s00030-018-0515-9.![]() ![]() ![]() |
[7] |
L. Desvillettes, K. Fellner, M. Pierre and J. Vovelle, Global existence for quadratic systems of reaction-diffusion, Adv. Nonlinear Stud., 7 (2007), 491-511.
doi: 10.1515/ans-2007-0309.![]() ![]() ![]() |
[8] |
L. Desvillettes and C. Soresina, Non-triangular cross-diffusion systems with predator–prey reaction terms, Ric. Mat., 68 (2019), 295-314.
doi: 10.1007/s11587-018-0403-y.![]() ![]() ![]() |
[9] |
E. J. Doedel, B. E. Oldeman, A. R. Champneys, F. Dercole, T. Fairgrieve, Y. Kuznetsov, R. Paffenroth, B. Sandstede, X. Wang and C. Zhang, AUTO-07P: Continuation and bifurcation software for ordinary differential equations,
![]() |
[10] |
S.-I. Ei, H. Izuhara and M. Mimura, Infinite dimensional relaxation oscillation in aggregation-growth systems, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 1859-1887.
doi: 10.3934/dcdsb.2012.17.1859.![]() ![]() ![]() |
[11] |
J. Eliaš, D. Hilhorst, M. Mimura and Y. Morita, Singular limit for a reaction-diffusion-ODE system in a neolithic transition model, J. Differential Equations, 295 (2021), 39-69.
doi: 10.1016/j.jde.2021.05.044.![]() ![]() ![]() |
[12] |
J. Eliaš, H. Izuhara, M. Mimura and B. Q. Tang, An aggregation model of cockroaches with fast-or-slow motion dichotomy, J. Math. Biol., 85 (2022), Paper No. 28.
doi: 10.1007/s00285-022-01797-1.![]() ![]() ![]() |
[13] |
S.-C. Fu and J.-C. Tsai, Wave propagation in predator–prey systems, Nonlinearity, 28 (2015), 4389-4423.
doi: 10.1088/0951-7715/28/12/4389.![]() ![]() ![]() |
[14] |
K. Fujii, C. S. Holling and P. M. Mace, A simple generalized model of attack by predators and parasites, Ecol. Res., 1 (1986), 141-156.
![]() |
[15] |
T. Funaki, H. Izuhara, M. Mimura and C. Urabe, A link between microscopic and macroscopic models of self-organized aggregation, Netw. Heterog. Media, 7 (2012), 705-740.
doi: 10.3934/nhm.2012.7.705.![]() ![]() ![]() |
[16] |
M. P. Hassell, The Dynamics of Arthropod Predator-Prey Systems, Princeton University Press, Princeton NJ, 1978.
![]() ![]() |
[17] |
M. P. Hassell, The Spatial and Temporal Dynamics of Host-Parasitoid Interactions, Oxford University Press, 2000.
![]() |
[18] |
S.-B. Hsu, Z. Liu and P. Magal, A Holling predator-prey model with handling and searching predators, SIAM J. Appl. Math., 80 (2020), 1778-1795.
doi: 10.1137/20M1316007.![]() ![]() ![]() |
[19] |
Y. Huang, How do cross-migration models arise?, Math Biosci., 195 (2005), 127-140.
doi: 10.1016/j.mbs.2005.01.005.![]() ![]() ![]() |
[20] |
M. Iida, M. Mimura and H. Ninomiya, Diffusion, cross-diffusion and competitive interaction, J. Math. Biol., 53 (2006), 617-641.
doi: 10.1007/s00285-006-0013-2.![]() ![]() ![]() |
[21] |
H. Izuhara and M. Mimura, Reaction-diffusion system approximation to the cross-diffusion competition system, Hiroshima Math. J., 38 (2008), 315-347.
![]() ![]() |
[22] |
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I. 1968.
![]() ![]() |
[23] |
G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996.
doi: 10.1142/3302.![]() ![]() ![]() |
[24] |
J. A. Metz and O. Diekmann, The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomathematics, 68 Springer Berlin, 1986.
![]() |
[25] |
M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations, J. Math. Biol., 9 (1980), 49-64.
doi: 10.1007/BF00276035.![]() ![]() ![]() |
[26] |
M. Mimura and J. D. Murray, On a diffusive prey-predator model which exhibits patchiness, J. Theoret. Biol., 75 (1978), 249-262.
doi: 10.1016/0022-5193(78)90332-6.![]() ![]() ![]() |
[27] |
J. Morgan, Global existence for semilinear parabolic systems, SIAM J. Math. Anal., 20 (1989), 1128-1144.
doi: 10.1137/0520075.![]() ![]() ![]() |
[28] |
H. Mori and D. A. Chant, The influence of prey density, relative humidity and starvation on the predacious behavior of Phytoseiulus persimilis Athias-Henriot (Acarina: Phytoseiidae), Can. J. Zool., 44 (1966), 483-491.
![]() |
[29] |
H. Murakawa, A relation between cross-diffusion and reaction-diffusion, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 147-158.
doi: 10.3934/dcdss.2012.5.147.![]() ![]() ![]() |
[30] |
R. Peng and J. Shi, Non-existence of non-constant positive steady states of two Holling type-Ⅱ predator–prey systems: Strong interaction case, J. Differential Equations, 247 (2009), 866-886.
doi: 10.1016/j.jde.2009.03.008.![]() ![]() ![]() |
[31] |
L. A. Segel and J. L. Jackson, Dissipative structure: An explanation and an ecological example, J. Theor. Biol., 37 (1972), 545-559.
![]() |
[32] |
N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theor. Biol., 79 (1979), 83-99.
doi: 10.1016/0022-5193(79)90258-3.![]() ![]() ![]() |
[33] |
R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis. Revised Edition., Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam-New York, 1979.
![]() ![]() |
[34] |
H. Zhang, H. Izuhara and Y. Wu, Asymptotic stability of two types of traveling waves for some predator-prey models, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 2323-2342.
doi: 10.3934/dcdsb.2021046.![]() ![]() ![]() |
Graphs of the functions
The graphs of the left- (solid curve) and right-hand sides (dashed curve) of the inequality (21) against
The graphs of
Neutral stability curves satisfying
Bifurcation diagram for
Bifurcation diagram for
Bifurcation diagram for