In this paper, we first establish a version of the Feynman-Kac formula for the tempered fractional general diffusion equation
$ \begin{align} \partial^{\beta, \eta}_{t} u(t,x) = \mathfrak{L}u(t,x) +b(t)u(t,x),\; \; x\in\mathcal{X},\; t\geq0, \end{align} $
with initial value $ f $ belonging to a Banach space $ (\mathbb{B}, \|\cdot\|) $, where $ \partial^{\beta, \eta}_{t} $ denotes the Caputo tempered fractional derivative with order $ \beta\in(0,1) $ and tempered parameter $ \eta>0 $, $ b(t) $ is a bounded and continuous external potential on $ [0, \infty) $, $ \mathfrak{L} $ is the infinitesimal generator of a general time-homogeneous strong Markov process $ \{X_{t}\}_{t\geq0} $, and $ \mathcal{X} $ denotes a Lusin space that is a topological space being homeomorphic to a Borel subset of a compact metric space. By using the properties of the tempered $ \beta $-stable subordinator $ S_{\beta,\eta}(t) $ and the inverse tempered $ \beta $-stable subordinator $ D_{\beta,\eta}(t) $, and the stochastic calculus for the stochastic integral driven by $ D_{\beta,\eta}(t) $, we show that the Feynman-Kac representation $ u(t,x) $ defined by
$ \begin{align} u(t,x) = {\mathbb{E}}^{x}\bigg[f(X_{D_{\beta,\eta}(t)}) e^{\int_{0}^{t}b(r)dD_{\beta,\eta}(r)}\bigg] \end{align} $
is the unique mild and weak solutions to the tempered fractional general diffusion equation. From the Feynman-Kac formula, we further show the continuity of the solution with respect to time based on the integral properties of the Mittag-Leffler function and differential formula of covariance for $ D_{\beta,\eta}(t) $. By exploring the scaling property of $ D_{\beta,\eta}(t) $, the explicit order is also presented for the continuity of the solution with respect to tempered parameter $ \eta $.
Citation: |
[1] | S. Albeverio, P. Blanchard and Z. M. Ma, Feynman-Kac semigroups in terms of signed smooth measures, in Random Partial Differential Equations, Internat. Ser. Numer. Math., 102 (1991), 1-31. doi: 10.1007/978-3-0348-6413-8_1. |
[2] | M. S. Alrawashdeh, J. F. Kelly, M. M. Meerschaerta and H. P. Scheffler, Applications of inverse tempered stable subordinators, Comput. Math. Appl., 73 (2017), 892-905. doi: 10.1016/j.camwa.2016.07.026. |
[3] | D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University Press, Cambridge, 2009. doi: 10.1017/CBO9780511809781. |
[4] | W. Arendt, C. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Springer, Berlin, 2001. doi: 10.1007/978-3-0348-5075-9. |
[5] | B. Baeumer and M. M. Meerschaert, Stochastic solutions for fractional Cauchy problems, Fract. Calc. Appl. Anal., 4 (2001), 481-500. |
[6] | N. H. Bingham, Limit theorems for occupation times of Markov processes, Z. Wahrsch. Verw. Gebiete, 17 (1971), 1-22. doi: 10.1007/BF00538470. |
[7] | L. Bondesson, G. K. Kristiansen and F. W. Steutel, Infinite divisibility of random variables and their integer parts, Statist. Probab. Lett., 28 (1996), 271-278. doi: 10.1016/0167-7152(95)00135-2. |
[8] | A. Cairoli and A. Baule, Feynman-Kac equation for anomalous processes with space- and time-dependent forces, J. Phys. A, 50 (2017), 164002. doi: 10.1088/1751-8121/aa5a97. |
[9] | M. H. Chen and W. H. Deng, Discretized fractional substantial calculus, ESAIM Math. Model. Numer. Anal., 49 (2015), 373-394. doi: 10.1051/m2an/2014037. |
[10] | Z. Q. Chen, W. H. Deng and P. B. Xu, Feynman-Kac transform for anomalous processes, SIAM J. Math. Anal., 53 (2021), 6017-6047. doi: 10.1137/21M1401528. |
[11] | Z. Q. Chen and M. Fukushima, Symmetric Markov Processes, Time Change, and Boundary Theory, Princeton University Press, Princeton, 2012. |
[12] | C. S. Deng and W. Liu, Semi-implicit Euler-Maruyama method for non-linear time-changed stochastic differential equations, BIT, 60 (2020), 1133-1151. doi: 10.1007/s10543-020-00810-7. |
[13] | M. Freidlin, Functional Integration and Partial Differential Equations, Princeton University Press, Princeton, 1985. doi: 10.1515/9781400881598. |
[14] | M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, 2nd edition, Walter de Gruyter & Co., Berlin, 2011. |
[15] | J. Gajda, A. Kumar and A. Wyłomańska, Stable Lévy process delayed by tempered stable subordinator, Statist. Probab. Lett., 145 (2019), 284-292. doi: 10.1016/j.spl.2018.09.008. |
[16] | R. Gorenflo, A. A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer, Heidelberg, 2014. doi: 10.1007/978-3-662-43930-2. |
[17] | N. Gupta and A. Kumar, Inverse tempered stable subordinators and related processes with Mellin transform, Statist. Probab. Lett., 186 (2022), Paper No. 109465, 10 pp. doi: 10.1016/j.spl.2022.109465. |
[18] | A. Iksanov, A. Marynych and M. Meiners, Limit theorems for renewal shot noise processes with eventually decreasing response functions, Stochastic Process. Appl., 124 (2014), 2132-2170. doi: 10.1016/j.spa.2014.02.007. |
[19] | M. Kac, On distributions of certain Wiener functionals, Trans. Amer. Math. Soc., 65 (1949), 1-13. doi: 10.1090/S0002-9947-1949-0027960-X. |
[20] | K. Kei, Stochastic calculus for a time-changed semimartingale and the associated stochastic differential equations, J. Theoret. Probab., 24 (2011), 789-820. doi: 10.1007/s10959-010-0320-9. |
[21] | A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. |
[22] | A. Kumar and P. Vellaisamy, Inverse tempered stable subordinators, Statist. Probab. Lett., 103 (2015), 134-141. doi: 10.1016/j.spl.2015.04.010. |
[23] | X. R. Mao, Stochastic Differential Equations and Applications, 2nd edition, Horwood, Chichester, 2008. doi: 10.1533/9780857099402. |
[24] | M. M. Meerschaert, D. A. Benson, H. P. Scheffler and B. Baeumer, Stochastic solution of space-time fractional diffusion equations, Phys. Rev. E, 65 (2002), 041103. doi: 10.1103/PhysRevE.65.041103. |
[25] | M. M. Meerschaert and F. Sabzikar, Tempered fractional Brownian motion, Statist. Probab. Lett., 83 (2013), 2269-2275. doi: 10.1016/j.spl.2013.06.016. |
[26] | M. M. Meerschaert and F. Sabzikar, Stochastic integration for tempered fractional Brownian motion, Stochastic Process. Appl., 124 (2014), 2363-2387. doi: 10.1016/j.spa.2014.03.002. |
[27] | A. Pérez, Feynman-Kac formula for the solution of Cauchy's problem with time dependent Lévy generator, Commun. Stoch. Anal., 6 (2012), 409-419. |
[28] | K. Sato, Lévy Processes and Infinitely Divisible Distribution, Cambridge University Press, Cambridge, 1999. |
[29] | L. Turgeman, S. Carmi and E. Barkai, Fractional Feynman-Kac equation for non-Brownian functionals, Phys. Rev. Lett., 103 (2009), 190201. doi: 10.1103/PhysRevLett.103.190201. |
[30] | X. C. Wu, W. H. Deng and E. Barkai, Tempered fractional Feynman-Kac equation: Theory and examples, Phys. Rev. E, 93 (2016), 032151. doi: 10.1103/PhysRevE.93.032151. |
[31] | H. Zhang, G. H. Li and M. K. Luo, Fractional Feynman-Kac equation with space-dependent anomalous exponent, J. Stat. Phys., 152 (2013), 1194-1206. doi: 10.1007/s10955-013-0810-0. |