\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Differential-spectral approximation based on reduced-dimension scheme for fourth-order parabolic equation

  • *Corresponding author: Jing An

    *Corresponding author: Jing An

This work is supported in part by National Natural Science Foundation of China (No. 12061023), Natural Science Research Project of Guizhou Provincial Department of Education (No. QJJ [2023] 011).

Abstract / Introduction Full Text(HTML) Figure(9) / Table(4) Related Papers Cited by
  • We propose in this paper an efficient differential-spectral approximation based on a reduced-dimension scheme for a fourth-order parabolic equation in a circular domain. First, we decompose the original problem into a series of equivalent one-dimensional fourth-order parabolic problems, based on which a fully discrete scheme based on differential-spectral approximation is established, and its stability and corresponding error estimation are also proved. Then, we utilized the orthogonality of Legendre polynomials to construct a set of effective basis functions and derived the matrix form associated with the full discrete scheme. Finally, several numerical examples are performed, and the numerical results account for the effectiveness and high accuracy of our algorithm.

    Mathematics Subject Classification: Primary: 65N15; Secondary: 65N35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Images of $ u(x, y, t_{1000}) $ (left) and $ u_{MN}^{1000}(x, y) $ (right) at $ t = 1 $ with $ N $ = 30 and $ M $ = 12

    Figure 2.  Error between $ u(x, y, t_{1000}) $ and $ u_{MN}^{1000}(x, y) $ with $ N $ = 20 and $ M $ = 10 (left) and $ N $ = 40 and $ M $ = 15 (right) at $ t = 1 $

    Figure 3.  Images of $ u(x, y, t_{5000}) $ (left) and $ u_{MN}^{5000}(x, y) $ (right) at $ t = 5 $ with $ N $ = 30 and $ M $ = 15

    Figure 4.  Error between $ u(x, y, t_{5000}) $ and $ u_{MN}^{5000}(x, y) $ with $ N $ = 40 and $ M $ = 10 (left) and $ N $ = 30 and $ M $ = 10 (right) at $ t = 5 $

    Figure 5.  Error curves on log-log scale under $ L^\infty $ norm for fixed $ N = 20 $ and different $ \tau $ (left) and fixed $ \tau = 0.001 $ and different $ N $ (right)

    Figure 6.  Images of $ u(x, y, t_{1000}) $ (left) and $ u_{MN}^{1000}(x, y) $ (right) at $ t = 1 $ with $ N $ = 30 and $ M $ = 10

    Figure 7.  Error between $ u(x, y, t_{1000}) $ and $ u_{MN}^{1000}(x, y) $ with $ N $ = 30 and $ M $ = 8 (left) and $ N $ = 40 and $ M $ = 10 (right) at $ t = 1 $

    Figure 8.  Images of $ u(x, y, t_{5000}) $ (left) and $ u_{MN}^{5000}(x, y) $ (right) at $ t = 5 $ with $ N $ = 30 and $ M $ = 14

    Figure 9.  Error between $ u(x, y, t_{5000}) $ and $ u_{MN}^{5000}(x, y) $ with $ N $ = 20 and $ M $ = 10 (left) and $ N $ = 40 and $ M $ = 8 (right) at $ t = 5 $

    Table 1.  Error at $ t = 1 $ for different $ M $ and $ N $

    $ N $ $ M=4 $ $ M=6 $ $ M=8 $ $ M=10 $
    20 0.0013 5.7562e-05 1.5984e-05 1.5984e-05
    30 0.0013 5.7456e-05 1.5984e-05 1.5984e-05
    40 0.0013 5.7886e-05 1.5984e-05 1.5984e-05
     | Show Table
    DownLoad: CSV

    Table 2.  Error at $ t = 5 $ for different $ M $ and $ N $

    $ N $ $ M=4 $ $ M=6 $ $ M=8 $ $ M=10 $
    20 0.0718 0.0031 8.7271e-04 8.7271e-04
    30 0.0724 0.0031 8.7272e-04 8.7272e-04
    40 0.0723 0.0031 8.7272e-04 8.7272e-04
     | Show Table
    DownLoad: CSV

    Table 3.  Error at $ t = 1 $ for different $ M $ and $ N $

    $ N $ $ M=4 $ $ M=6 $ $ M=8 $ $ M=10 $
    20 9.8927e-04 8.9926e-05 6.4376e-06 6.2753e-06
    30 9.9563e-04 9.007e-05 6.4771e-06 3.9904e-06
    40 9.9350e-04 8.9994e-05 6.4615e-06 3.9904e-06
     | Show Table
    DownLoad: CSV

    Table 4.  Error at $ t = 5 $ for different $ M $ and $ N $

    $ N $ $ M=4 $ $ M=6 $ $ M=8 $ $ M=10 $
    20 0.0014 3.1297e-05 8.0230e-06 7.9839e-06
    30 0.0014 3.1579e-05 7.8656e-06 3.5081e-06
    40 0.0014 9.1626e-05 7.9503e-06 3.5081e-06
     | Show Table
    DownLoad: CSV
  • [1] H. Alici and J. Shen, Highly efficient and sccurate spectral approximation of the Angular Mathieu equation for any parameter values q, J. Math. Study, 51 (2018), 131-149.  doi: 10.4208/jms.v51n2.18.02.
    [2] F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations, J. Differ. Equations, 83 (1990), 179-206.  doi: 10.1016/0022-0396(90)90074-Y.
    [3] X. ChenY. DiJ. Duan and D. Li, Linearized compact ADI schemes for nonlinear time-fractional Schrödinger equations, Appl. Math. Lett., 84 (2018), 160-167.  doi: 10.1016/j.aml.2018.05.007.
    [4] A. Cianchi and G. Maz'ya, Second-order regularity for parabolic p-Laplace problems, J. Geom. Anal., 30 (2020), 1565-1583.  doi: 10.1007/s12220-019-00213-3.
    [5] M. Collins, A higher-order parabolic equation for wave propagation in an ocean overlying an elastic bottom, J. Acoust. Soc. Am., 86 (1989), 1459-1464. 
    [6] M. Collins, Applications and time-domain solution of higher-order parabolic equations in underwater acoustics, J. Acoust. Soc. Am., 86 (1989), 1097-1102. 
    [7] M. Collins and E. Westwood, A higher-order energy-conserving parabolic equqation for range-dependent ocean depth, sound speed, and density, J. Acoust. Soc. Am., 89 (1991), 1068-1075. 
    [8] B. Deka and N. Kumar, A systematic study on weak Galerkin finite element method for second-order parabolic problems, Numer. Methods Partial Differ. Equ., 39 (2023), 2444-2474. 
    [9] B. Deng, J. Shen and Q. Zhuang, Second-order SAV schemes for the nonlinear Schrödinger equation and their error analysis, J. Sci. Comput., 88 (2021), Paper No. 69, 24 pp. doi: 10.1007/s10915-021-01576-y.
    [10] H. Dong and D. Kim, On the $L_p$-Solvability of higher order parabolic and elliptic systems with BMO coefficients, Arch. Ration. Mech. Anal., 199 (2011), 889-941.  doi: 10.1007/s00205-010-0345-3.
    [11] F. Du and T. Sun, A cubic B-spline finite element method for optimal control problem governed by nonlinear parabolic equation describing crystal surface, IAENG Int. J. Appl. Math., 52 (2022), 754-759. 
    [12] C. HaoL. Hsiao and B. Wang, Wellposedness for the fourth order nonlinear Schrödinger equations, J. Math. Anal. Appl., 320 (2006), 246-265.  doi: 10.1016/j.jmaa.2005.06.091.
    [13] D. LiW. CaoC. Zhang and Z. Zhang, Optimal error estimates of a linearized Crank-Nicolson Galerkin FEM for the Kuramoto-Tsuzuki equations, Commun. Comput. Phys., 26 (2019), 838-854.  doi: 10.4208/cicp.oa-2018-0208.
    [14] D. LiH. LiaoW. SunJ. Wang and J. Zhang, Analysis of L1-Galerkin FEMs for time fractional nonlinear parabolic problems, Commun. Comput. Phys., 24 (2018), 86-103.  doi: 10.4208/cicp.oa-2017-0080.
    [15] L. Li and J. An, An efficient spectral method and rigorous error analysis based on dimension reduction scheme for fourth order problems, Numer. Methods PDE, 37 (2021), 152-171.  doi: 10.1002/num.22523.
    [16] B. Pausader, The cubic fourth-order Schrödinger equation, PJ. Funct. Anal., 256 (2009), 2473-2517.  doi: 10.1016/j.jfa.2008.11.009.
    [17] A. SandjoS. Moutari and Y. Gningue, Solutions of fourth-order parabolic equation modeling thin film growth, J. Differential Equations, 259 (2015), 7260-7283.  doi: 10.1016/j.jde.2015.08.022.
    [18] J. Shen, Efficient spectral-Galerkin methods Ⅲ: Polar and cylindrical geometries, SIAM J. Sci. Comput., 18 (1997), 1583-1604.  doi: 10.1137/S1064827595295301.
    [19] J. Shen and  T. TangSpectral and High-Order Methods with Applications, Science Press, Beijing, 2006. 
    [20] J. Shen, T. Tang and L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer Series in Computational Mathematics, 41. Springer, Heidelberg, 2011. doi: 10.1007/978-3-540-71041-7.
    [21] J. ShenJ. Xu and J. Yang, The scalar auxiliary variable (SAV) approach for gradient flows, J. Comput. Phys., 353 (2018), 407-416.  doi: 10.1016/j.jcp.2017.10.021.
    [22] J. ShenJ. Xu and J. Yang, A new class of efficient and robust energy stable schemes for gradient flows, SIAM Rev., 61 (2019), 474-506.  doi: 10.1137/17M1150153.
    [23] L. Wang, A review of prolate spheroidal wave functions from the perspective of spectral methods, J. Math. Study, 50 (2017), 101-143.  doi: 10.4208/jms.v50n2.17.01.
    [24] C. Yang and T. Sun, Second-order time discretization for reaction coefficient estimation of bilinear parabolic optimization problem with Neumann boundary conditions, Comput. Math. Appl., 140 (2023), 211-224.  doi: 10.1016/j.camwa.2023.04.016.
  • 加载中

Figures(9)

Tables(4)

SHARE

Article Metrics

HTML views(1634) PDF downloads(384) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return