\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The number of limit cycles of Josephson equation

  • *Corresponding author: Changjian Liu

    *Corresponding author: Changjian Liu
Abstract / Introduction Full Text(HTML) Figure(9) / Table(3) Related Papers Cited by
  • In this paper, the existence and number of non-contractible limit cycles of the Josephson equation $ \beta \frac{d^{2}\Phi}{dt^{2}}+(1+\gamma \cos \Phi)\frac{d\Phi}{dt}+\sin \Phi = \alpha $ are studied, where $ \phi\in \mathbb S^{1} $ and $ (\alpha,\beta,\gamma)\in \mathbb R^{3} $. Concretely, by using some appropriate transformations, we prove that such type of limit cycles are changed to limit cycles of some Abel equation. By developing the methods on limit cycles of Abel equation, we prove that there are at most two non-contractible limit cycles, and the upper bound is sharp. At last, combining with the results of the paper (Chen and Tang, J. Differential Equations, 2020), we show that the sum of the number of contractible and non-contractible limit cycles of the Josephson equation is also at most two, and give the possible configurations of limit cycles when two limit cycles appear.

    Mathematics Subject Classification: 34C07; 34A34; 34C25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Cross-sections of the bifurcation diagram of system (3)

    Figure 2.  Phase portrait of $ (a,b,c)\in S_{3} $

    Figure 3.  Stability at infinity for $ (a,b,c)\in S_{1} $

    Figure 4.  Stability at infinity for $ (a,b,c)\in S_{5} $

    Figure 5.  Relationship between the functions $ b = \psi_{1}(a,c),b = \lvert c\sqrt{1-a^2}\rvert $ and $ b = \lvert c\rvert $, where "$ 0 $" and "$ 1 $" denote the number of limit cycles in the corresponding region

    Figure 6.  Solution curve of equation (4) when $ x\in[\frac{\pi}{2},\frac{5\pi}{2}] $

    Figure 7.  Solution curve of equation (4) when $ x\in[x^{*},x^{*}+2\pi] $

    Figure 8.  Solution curve of equation (26) when $ x\in[\frac{\pi}{2},\frac{5\pi}{2}] $

    Figure 9.  Numerical limit cycle of equation (1)

    Table 1.  Stability of the zero solution of equation (4)

    Classification of parameters Stability of the zero solution
    $ b>0 $ upper unstable and lower stable
    $ b=0, a>0 $ upper stable and lower stable
    $ a=b=0, c>0 $ upper unstable and lower stable
    $ a=b=0, c<0 $ upper stable and lower unstable
     | Show Table
    DownLoad: CSV

    Table 2.  Stability of system (4) at infinity

    Region Classification of parameters Stability of $ y=+\infty $ Stability of $ y=-\infty $
    $ S_{1} $ $ 0<b<\psi_{2}(a,c),0<a<a_{*},c<0 $ unstable stable
    $ S_{2} $ $\begin{gathered}\psi_{2}(a,c)<b<\varphi(a,c),0<a<a_{*},c<0 \\ 0<b<\varphi(a,c),a_{*}\leq a<1,c<0\end{gathered}$ unstable unstable
    $ S_{3} $ $\begin{gathered}\varphi(a,c)<b<\psi_{1}(a,c),0<a<a^{*},c<0 \\ \varphi(a,c)<b<-c\sqrt{1-a^{2}},a^{*}\leq a<1,c<0\end{gathered}$ unstable unstable
    $ S_{4} $ $ \psi_{1}(a,c)<b<-c\sqrt{1-a^{2}},0<a<a^{*},c<0 $ stable unstable
    $ S_{5} $ $\begin{gathered}b\geq-c\sqrt{1-a^{2}},0<a<a^{*},c<0 \\ b>\psi_{1}(a,c),a^{*}\leq a<1,c<0 \\ b> \max \{\psi_{1}(a,c),0\},0<a<1,c\geq0\end{gathered}$ stable unstable
    $ S_{6} $ $\begin{gathered}-c\sqrt{1-a^{2}}\leq b<\psi_{1}(a,c),a^{*}<a<1,c<0 \\ 0<b<\psi_{1}(a,c),0<a<1,c\geq0\end{gathered}$ unstable unstable
    $ S_{7} $ $ a>1 $ unstable unstable
    $ HL $ $ b=\varphi(a,c),0<a<1,c<0 $ unstable unstable
    $ SC_{11} $ $\begin{gathered}b=\psi_{1}(a,c),a^{*}\leq a<1,c<0 \\ b=\psi_{1}(a,c),0<a<1,c\geq0\end{gathered}$ - unstable
    $ SC_{12} $ $ b=\psi_{1}(a,c),0<a<a^{*},c<0 $ - unstable
    $ SC_{2} $ $ b=\psi_{2}(a,c),0<a<a_{*}<1,c<0 $ unstable -
    $ P_{1} $ $ a=1,b=\psi_{1}(1,c),c<0 $ - unstable
    $ SN_{1} $ $ a=1,b>\psi_{1}(1,c) $ stable unstable
    $ SN_{2} $ $ a=1,0<b<\psi_{1}(1,c) $ unstable unstable
    $ BT $ $ a=1,b=0,c<0 $ unstable unstable
    $ HLC $ $ 0<a<1,b=c=0 $ unstable unstable
    $ HE $ $ a=0,b=\varphi(0,c),c<0 $ - -
     | Show Table
    DownLoad: CSV

    Table 3.  Sign of $ \frac{dy}{dx} $ in different parts

    $ \sin x-a $ + + - - +
    $ y+\frac{f(x)}{g(x)} $ + - + - +
    $ \frac{dy}{dx} $ + - - + +
     | Show Table
    DownLoad: CSV
  • [1] A. ÁlvarezJ. Bravo and M. Fernández, Limit cycles of Abel equations of the first kind, J. Math. Anal. Appl., 423 (2015), 734-745.  doi: 10.1016/j.jmaa.2014.10.019.
    [2] M. ÁlvarezA. Gasull and H. Giacomini, A new uniqueness criterion for the number of periodic orbits of Abel equations, J. Differ. Equ., 234 (2007), 161-176.  doi: 10.1016/j.jde.2006.11.004.
    [3] J. BravoM. Fernández and A. Gasull, Limit cycles for some Abel equations having coefficients without fixed signs, Int. J. Bifurc. Chaos, 19 (2009), 3869-3876.  doi: 10.1142/S0218127409025195.
    [4] J. BravoM. Fernández and A. Gasull, Stability of singular limit cycles for Abel equations, Disc. Cont. Dyn. Syst., 35 (2015), 1873-1890.  doi: 10.3934/dcds.2015.35.1873.
    [5] J. BravoM. Fernández and I. Ojeda, Stability of singular limit cycles for Abel equations revisited, J. Differ. Equ., 379 (2024), 1-25.  doi: 10.1016/j.jde.2023.10.003.
    [6] J. Bravo and J. Torregrosa, Abel-like differential equations with no periodic solutions, J. Math. Anal. Appl., 342 (2008), 931-942.  doi: 10.1016/j.jmaa.2007.12.060.
    [7] H. Chen and Y. Tang, Global dynamics of the Josephson equation in $TS^{1}$, J. Differ. Equ., 269 (2020), 4884-4913.  doi: 10.1016/j.jde.2020.03.048.
    [8] L. A. Cherkas, Number of limit cycles of an autonomous second-order system, Differencial?nye Uravnenija, 12 (1976), 944-946. 
    [9] G. F. D. Duff, Limit-cycles and rotated vector fields, Ann. Math., 57 (1953), 15-31.  doi: 10.2307/1969724.
    [10] A. Gasull, Some open problems in low dimensional dynamical systems, SeMA J., 78 (2021), 233-269.  doi: 10.1007/s40324-021-00244-3.
    [11] A. GasullA. Geyer and F. Mañosas, On the number of limit cycles for perturbed pendulum equations, J. Differ. Equ., 261 (2016), 2141-2167.  doi: 10.1016/j.jde.2016.04.025.
    [12] A. GasullA. Geyer and F. Mañosas, A Chebyshev criterion with applications, J. Differ. Equ., 269 (2020), 6641-6655.  doi: 10.1016/j.jde.2020.05.015.
    [13] A. Gasull and A. Guillamon, Limit cycles for generalized Abel equations, Int. J. Bifurc. Chaos, 16 (2006), 3737-3745.  doi: 10.1142/S0218127406017130.
    [14] A. Gasull and J. Libre, Limit cycles for a class of Abel equations, SIAM J. Math. Anal., 21 (1990), 1235-1244.  doi: 10.1137/0521068.
    [15] M. HanX. HouL. Sheng and C. Wang, Theory of rotated equations and applications to a population model, Discrete Contin. Dyn. Syst., 38 (2018), 2171-2185.  doi: 10.3934/dcds.2018089.
    [16] T. Harko and M. K. Mak, Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach, Math. Biosci. Eng., 12 (2015), 41-69.  doi: 10.3934/mbe.2015.12.41.
    [17] J. Huang and H. Liang, Estimate for the number of limit cycles of Abel equation via a geometric criterion on three curves, NoDEA. Nonlinear. Differ. Equ. Appl., 24 (2017), 1-31.  doi: 10.1007/s00030-017-0469-3.
    [18] J. Huang and H. Liang, A geometric criterion for equation $\dot{x} = \sum_{i = 0}^{m}a_{i}(t)x^{i}$ having at most $m$ isolated periodic solutions, J. Differ. Equ., 268 (2020), 6230-6250.  doi: 10.1016/j.jde.2019.11.032.
    [19] J. Huang and Y. Zhao, Periodic solutions for equation $\dot{x} = A(t)x^{m}+B(t)x^{n}+C(t)x^{l}$ with $A(t)$ and $B(t)$ changing signs, J. Differ. Equ., 253 (2012), 73-99.  doi: 10.1016/j.jde.2012.03.021.
    [20] Y. Ilyashenko, Hilbert-type numbers for Abel equations, growth and zeros of holomorphic functions, Nonlinearity, 13 (2000), 1337-1342.  doi: 10.1088/0951-7715/13/4/319.
    [21] R. L. Kautz, On a proposed Josephson-effect voltage standard at zero current bias, Appl. Phys. Lett., 36 (1980), 386-388. 
    [22] J. Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields, Int. J. Bifurc. Chaos, 13 (2003), 47-106.  doi: 10.1142/S0218127403006352.
    [23] A. Lins-Neto, On the number of solutions of the equation $\frac{dx}{dt} = \sum\limits_{j = 0}^{n} a_{j}(t)x^{j}, 0\leq t\leq 1$, for which $x(0) = x(1)$, Invent. Math., 59 (1980), 67-76.  doi: 10.1007/BF01390315.
    [24] N. G. Lloyd, The number of periodic solutions of the equation $\dot{z} = z^{N}+p_{1}(t)z^{N-1}+...+p_{N}(t)$, Proc. London. Math. Soc., 27 (1973), 667-700.  doi: 10.1112/plms/s3-27.4.667.
    [25] N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems, J. London. Math. Soc., 20 (1979), 277-286.  doi: 10.1112/jlms/s2-20.2.277.
    [26] N. G. Lloyd, Small amplitude limit cycles of polynomial differential equations, Lect. Notes. Math., Springer-Verlag, Berlin, 1032 (1983), 346-357. doi: 10.1007/BFb0076806.
    [27] A. A. Panov, On the diversity of Poincaré mappings for cubic equations with variable coefficients, Funct. Anal. Appl., 33 (1999), 310-312.  doi: 10.1007/BF02467118.
    [28] L. Perko, Differential Equations and Dynamical Systems, Springer, New York, 2001. doi: 10.1007/978-1-4613-0003-8.
    [29] J. A. Sanders and R. Cushman, Limit cycles in the Josephson equation, SIAM J. Math. Anal., 17 (1986), 495-511.  doi: 10.1137/0517039.
    [30] R. J. Soulen and R. P. Giffard, Impedance and noise of an rf-biased RSQUID operated in a nonhysteretic regime, Appl. Phys. Lett., 32 (1978), 770. 
  • 加载中

Figures(9)

Tables(3)

SHARE

Article Metrics

HTML views(1517) PDF downloads(262) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return