In this paper, we study the global existence and boundedness of a Neumann initial-boundary value problem for the following three-species predator-prey model with power-like inter-specific interaction mechanism and prey-taxis:
$ \begin{align*} \begin{cases} u_t = d_1\Delta u+u(1-u)-b_1u^{1+\alpha}v^{1-\alpha}, \; &x\in{\Omega}, t>0, \\ v_t = d_2\Delta v-\nabla\cdot(\xi v\nabla u)+u^{1+\alpha}v^{1-\alpha}-b_2v^{1+\beta}w^{1-\beta}-\theta_1v, \; &x\in{\Omega}, t>0, \\ w_t = \Delta w-\nabla\cdot(\chi w\nabla v)+v^{1+\beta}w^{1-\beta}-\theta_2w, \; &x\in{\Omega}, t>0, \ \end{cases} \end{align*} $
in a bounded smooth domain $ \Omega\subset \mathbb{R}^2 $. The inter-specific interaction of the forms $ b_1u^{1+\alpha}v^{1-\alpha} $ and $ b_2v^{1+\beta}w^{1-\beta} $ with $ \alpha\in (0, 1) $, $ \beta\in(0, 1) $ is a natural extension of the classical predator-prey types $ b_1uv $ and $ b_2vw $. By delicate coupling energy estimates, we first establish the global existence of classical solutions in two dimensional spaces for appropriate initial data.
Citation: |
[1] |
H. Amann, Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems, Differential Integral Equations, 3 (1990), 13-75.
doi: 10.57262/die/1371586185.![]() ![]() ![]() |
[2] |
H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function Spaces, Differential Operators and Nonlinear Analysis, Teubner-Texte zur Mathematik, Stuttgart, 133 (1993), 9-126.
doi: 10.1007/978-3-663-11336-2_1.![]() ![]() ![]() |
[3] |
C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete Contin. Dyn. Syst., 34 (2014), 1701-1745.
doi: 10.3934/dcds.2014.34.1701.![]() ![]() ![]() |
[4] |
D. Grünbaum, Using spatially explicit models to characterize foraging performance in heterogeneous landscapes, Amer. Nat., 151 (1998), 97-115.
doi: 10.1086/286105.![]() ![]() |
[5] |
H. Jin and Z. Wang, Global stability of prey-taxis systems, J. Differential Equations, 262 (2017), 1257-1290.
doi: 10.1016/j.jde.2016.10.010.![]() ![]() ![]() |
[6] |
H. Jin, Z. Wang and L. Wu, Global dynamics of a three-species spatial food chain model, J. Differential Equations, 333 (2022), 144-183.
doi: 10.1016/j.jde.2022.06.007.![]() ![]() ![]() |
[7] |
P. Kareiva and G. Odell, Swarms of predators exhibit "preytaxis" if individual predators use area-restricted search, Amer. Nat., 130 (1987), 233-270.
doi: 10.1086/284707.![]() ![]() |
[8] |
J. Lee, T. Hillen and M. Lewis, Continuous traveling waves for prey-taxis, Bull. Math. Biol., 70 (2008), 654-676.
doi: 10.1007/s11538-007-9271-4.![]() ![]() ![]() |
[9] |
B. Li and Y. Li, On a chemotaxis-type Solow-Swan model for economic growth with capital-induced labor migration, J. Math. Anal. Appl., 511 (2022), 126080.
doi: 10.1016/j.jmaa.2022.126080.![]() ![]() ![]() |
[10] |
S. Li and K. Wang, Global boundedness of a three-species predator-prey model with prey-taxis and competition, Discrete Contin. Dyn. Syst., 43 (2023), 3644-3666.
doi: 10.3934/dcds.2023061.![]() ![]() ![]() |
[11] |
P. Liu, J. Shi and Z. Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2597-2625.
doi: 10.3934/dcdsb.2013.18.2597.![]() ![]() ![]() |
[12] |
N. Mizoguchi and P. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. Inst. H. Poincaré, C Anal. Non Linéaire, 31 (2014), 851-875.
doi: 10.1016/J.ANIHPC.2013.07.007.![]() ![]() ![]() |
[13] |
W. Murdoch, C. Briggs and R. Nisbet, Consumer-resource dynamics, Monographs in Population Biology, vol. 36, Princeton University Press, 2003.
![]() |
[14] |
W. Murdoch, J. Chesson and P. Chesson, Biological control in theory and practice, Amer. Nat., 125 (1985), 344-366.
doi: 10.1086/284347.![]() ![]() |
[15] |
T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.
![]() ![]() |
[16] |
P. Quittner and P. Souplet, Superlinear Parabolic Problems, Blow-Up, Global Existence and Steady States, Birkhäuser Verlag, Basel, 2007.
![]() ![]() |
[17] |
G. Ren and B. Liu, Global existence and convergence to steady states for a predator-prey model with both predator- and prey-taxis, Discrete Contin. Dyn. Syst., 42 (2022), 759-779.
doi: 10.3934/dcds.2021136.![]() ![]() ![]() |
[18] |
G. Skalski and J. Gilliam, Functional responses with predator interference: Viable alternatives to the Holling type II model, Ecology, 82 (2001), 3083-3092.
doi: 10.2307/2679836.![]() ![]() |
[19] |
C. Stinner, C. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007.
doi: 10.1137/13094058X.![]() ![]() ![]() |
[20] |
J. Wang and M. Wang, Boundedness and global stability of the two-predator and one-prey models with nonlinear prey-taxis, Z. Angew. Math. Phys., 69 (2018), Paper No. 63, 24 pp.
doi: 10.1007/s00033-018-0960-7.![]() ![]() ![]() |
[21] |
X. Wang, R. Li and Y. Shi, Global generalized solutions to a three species predator-prey model with prey-taxis, Discrete Contin. Dyn. Syst. Ser. B, 27 (2022), 7021-7042.
doi: 10.3934/dcdsb.2022031.![]() ![]() ![]() |
[22] |
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008.![]() ![]() ![]() |
[23] |
S. Wu, J. Shi and B. Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Differential Equations, 260 (2016), 5847-5874.
doi: 10.1016/j.jde.2015.12.024.![]() ![]() ![]() |