\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global boundedness of a three species predator-prey model with power-like interspecific interaction

  • *Corresponding author: Changchun Liu

    *Corresponding author: Changchun Liu

This work is supported by the Jilin Scientific and Technological Development Program (No. 20210101466JC).

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this paper, we study the global existence and boundedness of a Neumann initial-boundary value problem for the following three-species predator-prey model with power-like inter-specific interaction mechanism and prey-taxis:

    $ \begin{align*} \begin{cases} u_t = d_1\Delta u+u(1-u)-b_1u^{1+\alpha}v^{1-\alpha}, \; &x\in{\Omega}, t>0, \\ v_t = d_2\Delta v-\nabla\cdot(\xi v\nabla u)+u^{1+\alpha}v^{1-\alpha}-b_2v^{1+\beta}w^{1-\beta}-\theta_1v, \; &x\in{\Omega}, t>0, \\ w_t = \Delta w-\nabla\cdot(\chi w\nabla v)+v^{1+\beta}w^{1-\beta}-\theta_2w, \; &x\in{\Omega}, t>0, \ \end{cases} \end{align*} $

    in a bounded smooth domain $ \Omega\subset \mathbb{R}^2 $. The inter-specific interaction of the forms $ b_1u^{1+\alpha}v^{1-\alpha} $ and $ b_2v^{1+\beta}w^{1-\beta} $ with $ \alpha\in (0, 1) $, $ \beta\in(0, 1) $ is a natural extension of the classical predator-prey types $ b_1uv $ and $ b_2vw $. By delicate coupling energy estimates, we first establish the global existence of classical solutions in two dimensional spaces for appropriate initial data.

    Mathematics Subject Classification: Primary: 35B40, 35K57; Secondary: 35Q92, 92C17.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] H. Amann, Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems, Differential Integral Equations, 3 (1990), 13-75.  doi: 10.57262/die/1371586185.
    [2] H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function Spaces, Differential Operators and Nonlinear Analysis, Teubner-Texte zur Mathematik, Stuttgart, 133 (1993), 9-126. doi: 10.1007/978-3-663-11336-2_1.
    [3] C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete Contin. Dyn. Syst., 34 (2014), 1701-1745.  doi: 10.3934/dcds.2014.34.1701.
    [4] D. Grünbaum, Using spatially explicit models to characterize foraging performance in heterogeneous landscapes, Amer. Nat., 151 (1998), 97-115.  doi: 10.1086/286105.
    [5] H. Jin and Z. Wang, Global stability of prey-taxis systems, J. Differential Equations, 262 (2017), 1257-1290.  doi: 10.1016/j.jde.2016.10.010.
    [6] H. JinZ. Wang and L. Wu, Global dynamics of a three-species spatial food chain model, J. Differential Equations, 333 (2022), 144-183.  doi: 10.1016/j.jde.2022.06.007.
    [7] P. Kareiva and G. Odell, Swarms of predators exhibit "preytaxis" if individual predators use area-restricted search, Amer. Nat., 130 (1987), 233-270.  doi: 10.1086/284707.
    [8] J. LeeT. Hillen and M. Lewis, Continuous traveling waves for prey-taxis, Bull. Math. Biol., 70 (2008), 654-676.  doi: 10.1007/s11538-007-9271-4.
    [9] B. Li and Y. Li, On a chemotaxis-type Solow-Swan model for economic growth with capital-induced labor migration, J. Math. Anal. Appl., 511 (2022), 126080.  doi: 10.1016/j.jmaa.2022.126080.
    [10] S. Li and K. Wang, Global boundedness of a three-species predator-prey model with prey-taxis and competition, Discrete Contin. Dyn. Syst., 43 (2023), 3644-3666.  doi: 10.3934/dcds.2023061.
    [11] P. LiuJ. Shi and Z. Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2597-2625.  doi: 10.3934/dcdsb.2013.18.2597.
    [12] N. Mizoguchi and P. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. Inst. H. Poincaré, C Anal. Non Linéaire, 31 (2014), 851-875.  doi: 10.1016/J.ANIHPC.2013.07.007.
    [13] W. Murdoch, C. Briggs and R. Nisbet, Consumer-resource dynamics, Monographs in Population Biology, vol. 36, Princeton University Press, 2003.
    [14] W. MurdochJ. Chesson and P. Chesson, Biological control in theory and practice, Amer. Nat., 125 (1985), 344-366.  doi: 10.1086/284347.
    [15] T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433. 
    [16] P. Quittner and P. Souplet, Superlinear Parabolic Problems, Blow-Up, Global Existence and Steady States, Birkhäuser Verlag, Basel, 2007.
    [17] G. Ren and B. Liu, Global existence and convergence to steady states for a predator-prey model with both predator- and prey-taxis, Discrete Contin. Dyn. Syst., 42 (2022), 759-779.  doi: 10.3934/dcds.2021136.
    [18] G. Skalski and J. Gilliam, Functional responses with predator interference: Viable alternatives to the Holling type II model, Ecology, 82 (2001), 3083-3092.  doi: 10.2307/2679836.
    [19] C. StinnerC. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007.  doi: 10.1137/13094058X.
    [20] J. Wang and M. Wang, Boundedness and global stability of the two-predator and one-prey models with nonlinear prey-taxis, Z. Angew. Math. Phys., 69 (2018), Paper No. 63, 24 pp. doi: 10.1007/s00033-018-0960-7.
    [21] X. WangR. Li and Y. Shi, Global generalized solutions to a three species predator-prey model with prey-taxis, Discrete Contin. Dyn. Syst. Ser. B, 27 (2022), 7021-7042.  doi: 10.3934/dcdsb.2022031.
    [22] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.
    [23] S. WuJ. Shi and B. Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Differential Equations, 260 (2016), 5847-5874.  doi: 10.1016/j.jde.2015.12.024.
  • 加载中
SHARE

Article Metrics

HTML views(1850) PDF downloads(282) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return