We are concerned with the long time existence of strong solutions to the initial boundary value problem with slip boundary conditions for the compressible Navier-Stokes equations in three-dimensional simply connected bounded domains. We verify that the barotropic Navier-Stokes equations admit a unique strong solution on the time interval where the solution to the incompressible Navier-Stokes equations exists and is reasonably smooth, when the Mach number is sufficiently small. Furthermore, we obtain the uniform convergence of strong solutions for the compressible system toward those for the corresponding incompressible system on that time interval.
Citation: |
[1] |
P. Acevedo, C. Amrouche, C. Conca and A. Ghosh, Stokes and Navier-Stokes equations with Navier boundary condition, J. Diff. Eqs., 285 (2021), 258-320.
doi: 10.1016/j.jde.2021.02.045.![]() ![]() ![]() |
[2] |
T. Alazard, Low Mach number limit of the full Navier-Stokes equations, Arch. Rat. Mech. Anal., 180 (2006), 1-73.
doi: 10.1007/s00205-005-0393-2.![]() ![]() ![]() |
[3] |
J. Aramaki, $L^p$ theory for the $ \mathrm{div}$-$ \mathrm{curl}$ system, Int. J. Math. Anal., 8 (2014), 259-271.
doi: 10.12988/ijma.2014.4112.![]() ![]() ![]() |
[4] |
H. A. Baba and C. Amrouche, Stokes and Navier-Stokes problems with Navier-type boundary condition in $L^p$-spaces, Diff. Equ. Appl., 11 (2019), 203-226.
doi: 10.7153/dea-2019-11-08.![]() ![]() ![]() |
[5] |
L. C. Berselli and S. Spirito, On the vanishing viscosity limit of 3D Navier-Stokes equations under slip boundary conditions in general domains, Commun. Math. Phys., 316 (2012), 171-198.
doi: 10.1007/s00220-012-1581-1.![]() ![]() ![]() |
[6] |
D. Bresch, B. Desjardins, E. Grenier and C. K. Lin, Low Mach number limit of viscous ploytropic flows: Formal asymptotics in the periodic case, Stud. Appl. Math., 109 (2002), 125-149.
doi: 10.1111/1467-9590.01440.![]() ![]() ![]() |
[7] |
D. Bresch, B. Desjardins and C. K. Lin, On some compressible fluid models: Korteweg, lubrication and shallow water system, Commun. Partial Diff. Eqs., 28 (2003), 843-868.
doi: 10.1081/PDE-120020499.![]() ![]() ![]() |
[8] |
G. C. Cai and J. Li, Existence and exponential growth of global classical solutions to the compressible Navier-Stokes equations with slip boundary conditions in 3D bounded domains, arXiv: 2102.06348.
![]() |
[9] |
Y. Cho, H. J. Choe and H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids, J. Math. Pures Appl., 83 (2004), 243-275.
doi: 10.1016/j.matpur.2003.11.004.![]() ![]() ![]() |
[10] |
H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for isentropic compressible fluids, J. Diff. Eqs., 190 (2003), 504-523.
doi: 10.1016/S0022-0396(03)00015-9.![]() ![]() ![]() |
[11] |
R. Danchin, Low Mach number limit for compressible flows with periodic boundary conditions, Amer. J. Math., 124 (2002), 1153-1219.
doi: 10.1353/ajm.2002.0036.![]() ![]() ![]() |
[12] |
R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 97-133.
doi: 10.1016/s0294-1449(00)00056-1.![]() ![]() ![]() |
[13] |
B. Desjardins and E. Grenier, Low Mach number limit of viscous compressible flows in the whole space, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455 (1999), 2271-2279.
doi: 10.1098/rspa.1999.0403.![]() ![]() ![]() |
[14] |
B. Desjardins, E. Grenier, P. L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions, J. Math. Pures Appl., 78 (1999), 461-471.
doi: 10.1016/S0021-7824(99)00032-X.![]() ![]() ![]() |
[15] |
G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations, Steady-State Problems. Second Edition. Springer, New York, 2011.
doi: 10.1007/978-0-387-09620-9.![]() ![]() ![]() |
[16] |
T. Hagstrom and J. Lorenz, All-time existence of smooth solutions to PDEs of mixed type and the invariant subspace of uniform states, Adv. Appl. Math., 16 (1995), 219-257.
doi: 10.1006/aama.1995.1011.![]() ![]() ![]() |
[17] |
T. Hagstrom and J. Lorenz, All-time existence of classical solutions for slightly compressible flows, SIAM J. Math. Anal., 29 (1998), 652-672.
doi: 10.1137/S0036141097315312.![]() ![]() ![]() |
[18] |
T. Hagstrom and J. Lorenz, On the stability of approximate solutions of hyperbolic-parabolic systems and the all-time existence of smooth, slightly compressible flows, Indiana Univ. Math. J., 51 (2002), 1339-1387.
doi: 10.1512/iumj.2002.51.2061.![]() ![]() ![]() |
[19] |
D. Hoff, The zero-Mach limit of compressible flows, Commun. Math. Phys., 192 (1998), 543-554.
doi: 10.1007/s002200050308.![]() ![]() ![]() |
[20] |
X. D. Huang, J. Li and Z. P. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Comm. Pure Appl. Math., 65 (2012), 549-585.
doi: 10.1002/cpa.21382.![]() ![]() ![]() |
[21] |
S. Jiang, Q. C. Ju and F. C. Li, Low Mach number limit for the multi-dimensional full magnetohydrodynamic equations, Nonlinearity, 25 (2012), 1351-1365.
doi: 10.1088/0951-7715/25/5/1351.![]() ![]() ![]() |
[22] |
S. Jiang, Q. C. Ju, F. C. Li and Z. P. Xin, Low Mach number limit for the full magnetohydrodynamic equations with general initial data, Adv. Math., 259 (2014), 384-420.
doi: 10.1016/j.aim.2014.03.022.![]() ![]() ![]() |
[23] |
Q. C. Ju and Y. B. Ou, Low Mach number limit of Navier-Stokes equations with large temperature variations in bounded domains, J. Math. Pures Appl., 164 (2022), 131-157.
doi: 10.1016/j.matpur.2022.06.004.![]() ![]() ![]() |
[24] |
S. Klainerman and A. Majda, Singular limits of quasilinear hydrobolic systems with large parameters and the incompressible limit of compressible fluids, Commun. Pure Appl. Math., 34 (1981), 481-524.
doi: 10.1002/cpa.3160340405.![]() ![]() ![]() |
[25] |
S. Klainerman and A. Majda, Compressible and incompressible fluids, Comm. Pure Appl. Math., 35 (1982), 629-651.
doi: 10.1002/cpa.3160350503.![]() ![]() ![]() |
[26] |
P. L. Lions, Mathematical Topics in Fluid Mechanics, Vol. Ⅰ, Incompressible Models, Oxford University Press, New York, 1996.
![]() ![]() |
[27] |
P. L. Lions, Mathematical Topics in Fluid Mechanics, Vol. II, Compressible Models, Oxford University Press, New York, 1998.
![]() ![]() |
[28] |
P. L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl., 77 (1998), 585-627.
doi: 10.1016/S0021-7824(98)80139-6.![]() ![]() ![]() |
[29] |
A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Appl. Math. Sci., 53, Springer-Verlag, New York, 1984.
doi: 10.1007/978-1-4612-1116-7.![]() ![]() ![]() |
[30] |
N. Masmoudi, Incompressible, inviscid limit of the compressible Navier-Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 199-224.
doi: 10.1016/s0294-1449(00)00123-2.![]() ![]() ![]() |
[31] |
N. Masmoudi, Examples of singular limits in hydrodynamics, Handbook of Differential Equations, Elsevier/North-Holland, Amsterdam, 3 (2007), 195-275.
doi: 10.1016/S1874-5717(07)80006-5.![]() ![]() ![]() |
[32] |
N. Masmoudi, F. Rousset and C. Z. Sun, Uniform regularity for the compressible Navier-Stokes system with low Mach number in domains with boundaries, J. Math. Pures Appl., 161 (2022), 166-215.
doi: 10.1016/j.matpur.2022.03.004.![]() ![]() ![]() |
[33] |
A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.
doi: 10.1215/kjm/1250522322.![]() ![]() ![]() |
[34] |
L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa., 13 (1959), 115-162.
![]() ![]() |
[35] |
Y. B. Ou, Incompressible limits of the Navier-Stokes equations for all time, J. Diff. Eqs., 247 (2009), 3295-3314.
doi: 10.1016/j.jde.2009.05.009.![]() ![]() ![]() |
[36] |
Y. B. Ou and L. Yang, Incompressible limit of isentropic Navier-Stokes equations with ill-prepared data in bounded domains, SIAM J. Math. Anal., 54 (2022), 2948-2989.
doi: 10.1137/20M1380491.![]() ![]() ![]() |
[37] |
S. Schochet, The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit, Commun. Math. Phys., 104 (1986), 49-75.
doi: 10.1007/BF01210792.![]() ![]() ![]() |
[38] |
S. Schochet, Fast singular limits of hyperbolic PDEs, J. Diff. Eqs., 114 (1994), 476-512.
doi: 10.1006/jdeq.1994.1157.![]() ![]() ![]() |
[39] |
P. Subha and H. Rajib, On solution to the Navier-Stokes equations with Navier slip boundary condition for three dimensional incompressible fluid, Acta Math. Sci. Ser. B, 39 (2019), 1628-1638.
doi: 10.1007/s10473-019-0613-8.![]() ![]() ![]() |
[40] |
S. Ukai, The incompressible limit and the initial layer of the compressible Euler equation, J. Math. Kyoto Univ., 26 (1986), 323-331.
doi: 10.1215/kjm/1250520925.![]() ![]() ![]() |
[41] |
A. Valli, Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method, Ann. Sc. Norm. Super. Pisa. Cl. Sci., 10 (1983), 607-647.
![]() ![]() |
[42] |
W. V. Wahl, Estimating $\nabla u$ by $ \mathrm{div} u$ and $ \mathrm{curl} u$, Math. Methods Appl. Sci., 15 (1992), 123-143.
doi: 10.1002/mma.1670150206.![]() ![]() ![]() |