\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Carleman linearization of nonlinear systems and its finite-section approximations

This work was supported in parts by the ONR N00014-23-1-2779.

Abstract / Introduction Full Text(HTML) Figure(3) Related Papers Cited by
  • The Carleman linearization is one of the mainstream approaches to lift a finite-dimensional nonlinear dynamical system into an infinite-dimensional linear system with the promise of providing accurate approximation of the original nonlinear system over larger regions around the equilibrium for longer time horizons with respect to the conventional first-order linearization approach. Finite-section approximations of the lifted system has been widely used to study dynamical and control properties of the original nonlinear system. In this context, some of the outstanding problems are to determine under what conditions, as the finite-section order (i.e., truncation length) increases, the trajectory of the resulting approximate linear system from the finite-section scheme converges to that of the original nonlinear system and whether the time interval over which the convergence happens can be quantified explicitly. In this paper, we provide explicit error bounds for the finite-section approximation and prove that the convergence is indeed exponential with respect to the finite-section order. For a class of stable nonlinear dynamical systems, it is shown that one can achieve exponential convergence over the entire time horizon up to infinity. Our results are practically plausible as our proposed error bound estimates can be used to compute proper truncation lengths for a given application, e.g., determining proper sampling period for model predictive control and reachability analysis for safety verifications. We validate our theoretical findings through several illustrative simulations.

    Mathematics Subject Classification: 34H05, 37M99, 65P99.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Plotted are maximal approximation error $ E^\pm (x_0, N), 1\le N\le 100, 0\le x_0\le 1 $ in the logarithmic scale between the first block $ y_{1, N}^\pm $ of the finite section scheme (42) and the true solution $ x^\pm $ of the dynamical system (40) with positive sign (left) and negative sign (right) during the time period $ [0, T^*_\pm] $

    Figure 2.  Plotted on the top are maximal approximation error $ E^+(x_0, N, T^*), 1\le N\le 100, 0\le x_0\le 1, $ in the logarithmic scale with $ T^* $ taking value $ 0.01 $ (top left) and $ 1 $ (top right) respectively. Plotted on the bottom are approximation error $ E^+(x_0, N)(t), 1\le N\le 100, 0\le t\le 1 $ in the logarithmic scale for the initial $ x_0 = 0.3 $ and $ 0.5 $ respectively

    Figure 3.  Plotted on the top left is the vector field and limit cycle representation of the Van der Pol oscillator (44) with $ \mu = 0.5 $. On the top right, bottom left and bottom right are the maximal approximation error $ E(x_0,v_0,N,T^*) $ in the logarithmic scale, where $ T^* = 0.1, \mu = 0.5 $ and the truncation order $ N = 1, 10, 20 $ respectively

  • [1] M. Abudia, J. A. Rosenfeld and R. Kamalapurka, Carleman lifting for nonlinear system identification with guaranteed error bounds, 2023 American Control Conference (ACC), San Diego, CA, USA, 2023,929-934. doi: 10.23919/ACC55779.2023.10155924.
    [2] T. Akiba, Y. Morii and M. Kaoru, Carleman linearization approach for chemical kinetics integration toward quantum computation, Sci. Rep., 13 (2023), article no. 3935. doi: 10.1038/s41598-023-31009-9.
    [3] A. Amini, Q. Sun and N. Motee, Error bounds for Carleman linearization of general nonlinear systems, 2021 Proc. the Conference on Control and its Applications, SIAM, 2021, 1-8. doi: 10.1137/1.9781611976847.1.
    [4] A. Amini, Q. Sun and N. Motee, Approximate optimal control design for a class of nonlinear systems by lifting Hamilton-Jacobi-Bellman equation, Proc. the 2020 American Control Conference (ACC), IEEE, 2020, 2717-2722. doi: 10.23919/ACC45564.2020.9147576.
    [5] A. Amini, Q. Sun and N. Motee, Quadratization of Hamilton-Jacobi-Bellman equation for near-optimal control of nonlinear systems, Proc. the 59th IEEE Conference on Decision and Control (CDC), IEEE, 2020,731-736. doi: 10.1109/CDC42340.2020.9303913.
    [6] A. AminiQ. Sun and N. Motee, Carleman state feedback control design of a class of nonlinear control systems, IFAC-PapersOnLine, 52 (2019), 229-234.  doi: 10.1016/j.ifacol.2019.12.163.
    [7] V. I. Arnold, V. Kozlov and A. Neishtadt, Dynamical Systems Ⅲ, Springer, 1988. doi: 10.1007/978-3-662-02535-2.
    [8] J. Bergh and J. Lofstrom, Interpolation Spaces: An Introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976.
    [9] R. Brockett, The early days of geometric nonlinear control, Automatica, 50 (2014), 2203-2224.  doi: 10.1016/j.automatica.2014.06.010.
    [10] M. Forets and A. Pouly, Explicit error bounds for Carleman linearization, Preprint, 2017, arXiv: 1711.02552.
    [11] M. Forets and C. Schilling, Reachability of weakly nonlinear systems using Carleman linearization, International Conference on Reachability Problems, Springer, 2021, 85-99. doi: 10.1007/978-3-030-89716-1_6.
    [12] K. Grochenig and M. Leinert, Symmetry and inverse-closedness of matrix algebras and functional calculus for infinite matrices, Trans. Amer. Math. Soc., 358 (2006), 2695-2711.  doi: 10.1090/S0002-9947-06-03841-4.
    [13] N. Hashemian and A. Armaou, Fast moving horizon estimation of nonlinear processes via Carleman linearization, 2015 American Control Conference (ACC), IEEE, 2015, 3379-3385. doi: 10.1109/ACC.2015.7171854.
    [14] A. Isidori, Nonlinear Control Systems: An Introduction, Lect. Notes Control Inf. Sci., 72, Springer-Verlag, Berlin, 1985. doi: 10.1007/BFb0006368.
    [15] W. Itani and S. Succi, Analysis of Carleman linearization of lattice Boltzmann, Fluids, 7 (2022), Article no. 24. doi: 10.3390/fluids7010024.
    [16] H. K. Khalil, Nonlinear Control, Vol. 406, Pearson, New York, 2015.
    [17] K. Kowalski and W.-H. Steeb, Nonlinear Dynamical Systems and Carleman Linearization, World Scientific Publishing Co., Inc., River Edge, NJ, 1991. doi: 10.1142/1347.
    [18] A. J. Krener, Linearization and bilinearization of control systems, Proc. the 1974 Allerton Conference on Circuit and Systems Theory, Urbana Ⅲ, (1974).
    [19] A. J. Krener, Bilinear and nonlinear realizations of input-output maps, SIAM J. Control, 13 (1975), 827-834.  doi: 10.1137/0313049.
    [20] J.-P. Liu, H. O. Kolden, H. K. Krovi, N. F. Loureiro, K. Trivisa and A. M. Childs, Efficient quantum algorithm for dissipative nonlinear differential equations, Proc. Natl. Acad. Sci. USA, 118 (2021), Article no. e2026805118. doi: 10.1073/pnas.2026805118.
    [21] K. Loparo and G. Blankenship, Estimating the domain of attraction of nonlinear feedback systems, IEEE Trans. Autom. Control., 23 (1978), 602-608.  doi: 10.1109/TAC.1978.1101779.
    [22] I. Mezic, On numerical approximations of the Koopman operator, Mathematics, 10 (2022), 1180.  doi: 10.3390/math10071180.
    [23] J. Minisini, A. Rauh and E. P. Hofer, Carleman linearization for approximate solutions of nonlinear control problems: Part 1–theory, Proc. of the 14th Intl. Workshop on Dynamics and Control, Moscow-Zvenigorod, Russia, 2008,215-222.
    [24] N. Motee and Q. Sun, Sparsity and spatial localization measures for spatially distributed systems, SIAM J. Control Optim., 55 (2017), 200-235.  doi: 10.1137/15M1049294.
    [25] S. PruekprasertJ. DubutT. TakisakaC. Eberhart and A. Cetinkaya, Moment propagation through Carleman linearization with application to probabilistic safety analysis, Automatica, 160 (2024), 111441.  doi: 10.1016/j.automatica.2023.111441.
    [26] A. RauhJ. Minisini and H. Aschemann, Carleman linearization for control and for state and disturbance estimation of nonlinear dynamical processes, IFAC Proc., 42 (2009), 455-460.  doi: 10.3182/20090819-3-PL-3002.00079.
    [27] D. RotondoG. Luta and J. H. U. Aarvag, Towards a Taylor-Carleman bilinearization approach for the design of nonlinear state-feedback controllers, Eur. J. Control, 68 (2022), 100670.  doi: 10.1016/j.ejcon.2022.100670.
    [28] C. E. Shin and Q. Sun, Polynomial control on stability, inversion and powers of matrices on simple graphs, J. Funct. Anal., 276 (2019), 148-182.  doi: 10.1016/j.jfa.2018.09.014.
    [29] W.-H. Steeb and F. Wilhelm, Non-linear autonomous systems of differential equations and Carleman linearization procedure, J. Math. Anal. Appl., 77 (1980), 601-611.  doi: 10.1016/0022-247X(80)90250-4.
    [30] Q. Sun, Wiener's lemma for infinite matrices, Trans. Amer. Math. Soc., 359 (2007), 3099-3123.  doi: 10.1090/S0002-9947-07-04303-6.
    [31] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts Appl. Math., 2, Springer-Verlag, New York, 2003.
  • 加载中

Figures(3)

SHARE

Article Metrics

HTML views(1774) PDF downloads(160) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return