This paper deals with the Neumann initial-boundary value problem for the diffusive logistic epidemic model with saturated incidence and treatment rates,
$ \begin{align*} \begin{cases} \dfrac{\partial S}{\partial t} = d_S\Delta S-\dfrac{\beta SI}{1+\alpha I}+rS\left(1-\dfrac{S}{K}\right),\quad &x \in \Omega, \ t>0, \\ \dfrac{\partial I}{\partial t} = d_I\Delta I+\dfrac{\beta SI}{1+\alpha I}-\dfrac{\lambda I}{1+\varepsilon I},\quad &x \in \Omega, \ t>0, \end{cases} \end{align*} $
where $ \Omega \subset \mathbb{R}^N $ ($ N \in \mathbb{N} $) is a bounded domain with smooth boundary and $ d_S, d_I, r, K, \alpha, \beta, \varepsilon, \lambda >0 $ are constants. The main result of this paper asserts that the disease-free equilibrium $ (K,0) $ is (globally) asymptotically stable under some conditions for $ K, \alpha, \beta, \varepsilon $ and $ \lambda $, and initial data if $ \mathcal{R}_0: = \frac{K\beta}{\lambda}\le1 $.
Citation: |
[1] |
E. Avila-Vales, G. E. García-Almeida and Á. G. C. Pérez, Qualitative analysis of a diffusive SIR epidemic model with saturated incidence rate in a heterogeneous environment, J. Math. Anal. Appl., 503 (2021), Paper No. 125295, 35 pp.
doi: 10.1016/j.jmaa.2021.125295.![]() ![]() |
[2] |
X. Bai and M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553-583.
doi: 10.1512/iumj.2016.65.5776.![]() ![]() ![]() |
[3] |
V. Capasso and G. Serio, A generalization of the Kermack–McKendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43-61.
doi: 10.1016/0025-5564(78)90006-8.![]() ![]() ![]() |
[4] |
Y. Chiyo, Y. Tanaka, A. Uchida and T. Yokota, Global asymptotic stability of endemic equilibria for a diffusive SIR epidemic model with saturated incidence and logistic growth, Discrete Contin. Dyn. Syst. Ser. B, 28 (2023), 2184-2210.
doi: 10.3934/dcdsb.2022163.![]() ![]() ![]() |
[5] |
R. Cui, Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 2997-3022.
doi: 10.3934/dcdsb.2020217.![]() ![]() ![]() |
[6] |
A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969.
![]() |
[7] |
J. K. Ghosh, P. Majumdar and U. Ghosh, Qualitative analysis and optimal control of an SIR model with logistic growth, non-monotonic incidence and saturated treatment, Math. Model. Nat. Phenom., 16 (2021), Paper No. 13, 26 pp.
doi: 10.1051/mmnp/2021004.![]() ![]() ![]() |
[8] |
G. Guan and Z. Guo, Bifurcation and stability of a delayed SIS epidemic model with saturated incidence and treatment rates in heterogeneous networks, Appl. Math. Model., 101 (2022), 55-75.
doi: 10.1016/j.apm.2021.08.024.![]() ![]() ![]() |
[9] |
D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.
doi: 10.1016/j.jde.2004.10.022.![]() ![]() ![]() |
[10] |
W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Royal Soc. Lond. A, 115 (1927), 700-721.
doi: 10.1098/rspa.1927.0118.![]() ![]() |
[11] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, R.I., 1968.
![]() |
[12] |
G. Liu and X. Zhang, Analysis on a diffusive two-stage epidemic model with logistic growth and saturated incidence rates, Nonlinear Anal. Real World Appl., 64 (2022), Paper No. 103444, 25 pp.
doi: 10.1016/j.nonrwa.2021.103444.![]() ![]() ![]() |
[13] |
J. V. Noble, Geographic and temporal development of plagues, Nature, 250 (1974), 726-729.
doi: 10.1038/250726a0.![]() ![]() |
[14] |
Á. G. C. Pérez, E. Avila-Vales and G. E. García-Almeida, Bifurcation analysis of an SIR model with logistic growth, nonlinear incidence, and saturated treatment, Complexity, 2019 (2019), Art. ID 9876013, 21 pp.
doi: 10.1155/2019/9876013.![]() ![]() |
[15] |
M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984, Corrected reprint of the 1967 original.
doi: 10.1007/978-1-4612-5282-5.![]() ![]() |
[16] |
G. F. Webb, A reaction-diffusion model for a deterministic diffusive epidemic, J. Math. Anal. Appl., 84 (1981), 150-161.
doi: 10.1016/0022-247X(81)90156-6.![]() ![]() ![]() |
[17] |
J. Zhang and R. Cui, Asymptotic profiles of the endemic equilibrium of a diffusive SIS epidemic system with saturated incidence rate and spontaneous infection, Math. Methods Appl. Sci., 44 (2021), 517-532.
doi: 10.1002/mma.6754.![]() ![]() ![]() |
[18] |
J. Zhang, Z. Jin, Q. Liu and Z.-Y. Zhang, Analysis of a delayed SIR model with nonlinear incidence rate, Discrete Dyn. Nat. Soc., 2008 (2008), Art. ID 636153, 16 pp.
doi: 10.1155/2008/636153.![]() ![]() ![]() |
[19] |
X. Zhang and L. Chen, The periodic solution of a class of epidemic models, Comput. Math. Appl., 38 (1999), 61-71.
doi: 10.1016/S0898-1221(99)00206-0.![]() ![]() ![]() |
[20] |
Y. Zhou, D. Xiao and Y. Li, Bifurcations of an epidemic model with non-monotonic incidence rate of saturated mass action, Chaos Solitons Fractals, 32 (2007), 1903-1915.
doi: 10.1016/j.chaos.2006.01.002.![]() ![]() ![]() |
When
When