\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotic stability of disease-free equilibria in a diffusive logistic SIR epidemic model with saturated incidence and treatment rates

  • *Corresponding author: Tomomi Yokota

    *Corresponding author: Tomomi Yokota

The second author is supported by JSPS KAKENHI Grant Number 22KJ2805. The third author is supported by JSPS KAKENHI Grant Number JP21K03278.

Abstract / Introduction Full Text(HTML) Figure(2) Related Papers Cited by
  • This paper deals with the Neumann initial-boundary value problem for the diffusive logistic epidemic model with saturated incidence and treatment rates,

    $ \begin{align*} \begin{cases} \dfrac{\partial S}{\partial t} = d_S\Delta S-\dfrac{\beta SI}{1+\alpha I}+rS\left(1-\dfrac{S}{K}\right),\quad &x \in \Omega, \ t>0, \\ \dfrac{\partial I}{\partial t} = d_I\Delta I+\dfrac{\beta SI}{1+\alpha I}-\dfrac{\lambda I}{1+\varepsilon I},\quad &x \in \Omega, \ t>0, \end{cases} \end{align*} $

    where $ \Omega \subset \mathbb{R}^N $ ($ N \in \mathbb{N} $) is a bounded domain with smooth boundary and $ d_S, d_I, r, K, \alpha, \beta, \varepsilon, \lambda >0 $ are constants. The main result of this paper asserts that the disease-free equilibrium $ (K,0) $ is (globally) asymptotically stable under some conditions for $ K, \alpha, \beta, \varepsilon $ and $ \lambda $, and initial data if $ \mathcal{R}_0: = \frac{K\beta}{\lambda}\le1 $.

    Mathematics Subject Classification: Primary: 35K40; Secondary: 35B40, 92D30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.1.  When $ \varepsilon = 0 $ and also $ 0< \varepsilon\le \alpha $, there are two constant equilibria of (1) with parameters chosen in the blue coloured region

    Figure 1.2.  When $ \varepsilon> \alpha $, there are two, three and four constant equilibria of (1) with parameters chosen in the blue, green and red coloured regions, respectively

  • [1] E. Avila-Vales, G. E. García-Almeida and Á. G. C. Pérez, Qualitative analysis of a diffusive SIR epidemic model with saturated incidence rate in a heterogeneous environment, J. Math. Anal. Appl., 503 (2021), Paper No. 125295, 35 pp. doi: 10.1016/j.jmaa.2021.125295.
    [2] X. Bai and M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553-583.  doi: 10.1512/iumj.2016.65.5776.
    [3] V. Capasso and G. Serio, A generalization of the Kermack–McKendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43-61.  doi: 10.1016/0025-5564(78)90006-8.
    [4] Y. ChiyoY. TanakaA. Uchida and T. Yokota, Global asymptotic stability of endemic equilibria for a diffusive SIR epidemic model with saturated incidence and logistic growth, Discrete Contin. Dyn. Syst. Ser. B, 28 (2023), 2184-2210.  doi: 10.3934/dcdsb.2022163.
    [5] R. Cui, Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 2997-3022.  doi: 10.3934/dcdsb.2020217.
    [6] A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969.
    [7] J. K. Ghosh, P. Majumdar and U. Ghosh, Qualitative analysis and optimal control of an SIR model with logistic growth, non-monotonic incidence and saturated treatment, Math. Model. Nat. Phenom., 16 (2021), Paper No. 13, 26 pp. doi: 10.1051/mmnp/2021004.
    [8] G. Guan and Z. Guo, Bifurcation and stability of a delayed SIS epidemic model with saturated incidence and treatment rates in heterogeneous networks, Appl. Math. Model., 101 (2022), 55-75.  doi: 10.1016/j.apm.2021.08.024.
    [9] D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.
    [10] W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Royal Soc. Lond. A, 115 (1927), 700-721.  doi: 10.1098/rspa.1927.0118.
    [11] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, R.I., 1968.
    [12] G. Liu and X. Zhang, Analysis on a diffusive two-stage epidemic model with logistic growth and saturated incidence rates, Nonlinear Anal. Real World Appl., 64 (2022), Paper No. 103444, 25 pp. doi: 10.1016/j.nonrwa.2021.103444.
    [13] J. V. Noble, Geographic and temporal development of plagues, Nature, 250 (1974), 726-729.  doi: 10.1038/250726a0.
    [14] Á. G. C. Pérez, E. Avila-Vales and G. E. García-Almeida, Bifurcation analysis of an SIR model with logistic growth, nonlinear incidence, and saturated treatment, Complexity, 2019 (2019), Art. ID 9876013, 21 pp. doi: 10.1155/2019/9876013.
    [15] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984, Corrected reprint of the 1967 original. doi: 10.1007/978-1-4612-5282-5.
    [16] G. F. Webb, A reaction-diffusion model for a deterministic diffusive epidemic, J. Math. Anal. Appl., 84 (1981), 150-161.  doi: 10.1016/0022-247X(81)90156-6.
    [17] J. Zhang and R. Cui, Asymptotic profiles of the endemic equilibrium of a diffusive SIS epidemic system with saturated incidence rate and spontaneous infection, Math. Methods Appl. Sci., 44 (2021), 517-532.  doi: 10.1002/mma.6754.
    [18] J. Zhang, Z. Jin, Q. Liu and Z.-Y. Zhang, Analysis of a delayed SIR model with nonlinear incidence rate, Discrete Dyn. Nat. Soc., 2008 (2008), Art. ID 636153, 16 pp. doi: 10.1155/2008/636153.
    [19] X. Zhang and L. Chen, The periodic solution of a class of epidemic models, Comput. Math. Appl., 38 (1999), 61-71.  doi: 10.1016/S0898-1221(99)00206-0.
    [20] Y. ZhouD. Xiao and Y. Li, Bifurcations of an epidemic model with non-monotonic incidence rate of saturated mass action, Chaos Solitons Fractals, 32 (2007), 1903-1915.  doi: 10.1016/j.chaos.2006.01.002.
  • 加载中

Figures(2)

SHARE

Article Metrics

HTML views(978) PDF downloads(239) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return