Early Access articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Early Access publication benefits the research community by making new scientific discoveries known as quickly as possible.
Readers can access Early Access articles via the “Early Access” tab for the selected journal.
This paper introduces a novel computer-assisted method for detecting and constructively proving the existence of cusp bifurcations in differential equations. The approach begins with a two-parameter continuation along which a tool based on the theory of Poincaré index is employed to identify the presence of a cusp bifurcation. Using the approximate cusp location, Newton's method is then applied to a given augmented system (the cusp map), yielding a more precise numerical approximation of the cusp. Through a successful application of a Newton-Kantorovich type theorem, we establish the existence of a non-degenerate zero of the cusp map in the vicinity of the numerical approximation. Employing a Gershgorin circles argument, we then prove that exactly one eigenvalue of the Jacobian matrix at the cusp candidate has zero real part, thus rigorously confirming the presence of a cusp bifurcation. Finally, by incorporating explicit control over the cusp's location, a rigorous enclosure for the normal form coefficient is obtained, providing the explicit dynamics on the center manifold at the cusp. We show the effectiveness of this method by applying it to four distinct models.
Citation: |
Figure 2. On the left the projection of the triangulation for the manifold of equilibria of (31) on the $ (\lambda_1,\lambda_2,x_1) $-space; on the right a close up of the projection on the $ (\lambda_1,\lambda_2) $-plane near the second cusp point (black circular mark). The darkest shade of grey identifies the region where three equilibria exist for the same value of the parameter
[1] | G. Arioli and H. Koch, Computer-assisted methods for the study of stationary solutions in dissipative systems, applied to the Kuramoto-Sivashinski equation, Arch. Ration. Mech. Anal., 197 (2010), 1033-1051. doi: 10.1007/s00205-010-0309-7. |
[2] | A. D. Bazykin, Mathematical Biophysics of Interacting Populations, "Nauka", Moscow, 1985. |
[3] | M. L. Brodzik, The computation of simplicial approximations of implicitly defined $p$-dimensional manifolds, Comput. Math. Appl., 36 (1998), 93-113. doi: 10.1016/S0898-1221(98)00164-3. |
[4] | M. L. Brodzik and W. C. Rheinboldt, The computation of simplicial approximations of implicitly defined two-dimensional manifolds, Comput. Math. Appl., 28 (1994), 9-21. doi: 10.1016/0898-1221(94)00175-8. |
[5] | V. I. Bykov, G. S. Yablonskii and V. F. Kim, On the simple model of kinetic self-oscillations in catalytic reaction of co oxidation, Doklady AN USSR (Chemistry), 242 (1978), 637-639. |
[6] | M. J. Capiński and P. Zgliczyński, Geometric proof for normally hyperbolic invariant manifolds, J. Differential Equations, 259 (2015), 6215-6286. doi: 10.1016/j.jde.2015.07.020. |
[7] | M. J. Capiński and P. Zgliczyński, Beyond the Melnikov method: a computer assisted approach, J. Differential Equations, 262 (2017), 365-417. |
[8] | S.-N. Chow and Y.-Q. Shen, Bifurcations via singular value decompositions, Applied Mathematics and Computation, 28 (1988), 231-245. doi: 10.1016/0096-3003(88)90139-7. |
[9] | K. E. M. Church and J.-P. Lessard, Rigorous verification of Hopf bifurcations in functional differential equations of mixed type, Phys. D, 429 (2022), Paper No. 133072, 13pp. |
[10] | K. E. M. Church and E. Queirolo, Computer-assisted proofs of Hopf bubbles and degenerate Hopf bifurcations, Journal of Dynamics and Differential Equations, 36 (2024), 3385-3439. |
[11] | E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1955. |
[12] | A. Colombo, N. D. Buono, L. Lopez and A. Pugliese, Computational techniques to locate crossing/sliding regions and their sets of attraction in non-smooth dynamical systems, Discrete and Continuous Dynamical Systems - B, 23 (2018), 2911-2934. doi: 10.3934/dcdsb.2018166. |
[13] | K. Constantineau, C. García-Azpeitia and J.-P. Lessard, Spatial relative equilibria and periodic solutions of the Coulomb $(n+1)$-body problem, Qual. Theory Dyn. Syst., 21 (2022), Paper No. 3, 19 pp. |
[14] | B. Delamonica, G. Balázsi and M. Shub, Cusp bifurcation in metastatic breast cancer cells, arXiv: 2203.15888, 2023. |
[15] | A. Dhooge, W. Govaerts and Yu. A. Kuznetsov, MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs, ACM Trans. Math. Software, 29 (2003), 141-164. |
[16] | L. Dieci and T. Eirola, On smooth decompositions of matrices, SIAM J. Matrix Anal. Appl., 20 (1999), 800-819. doi: 10.1137/S0895479897330182. |
[17] | L. Dieci, M. G. Gasparo and A. Papini, Path following by svd, In Computational Science–ICCS 2006, Lecture Notes in Computer Science, Springer, 3994 (2006), 677-684. doi: 10.1007/11758549_92. |
[18] | L. Dieci, M. G. Gasparo, A. Papini and A. Pugliese, Locating coalescing singular values of large two-parameter matrices, Mathematics and Computers in Simulation, 81 (2011), 996-1005, Important aspects on structural dynamical systems and their numerical computation. doi: 10.1016/j.matcom.2010.10.005. |
[19] | L. Dieci and A. Pugliese, Singular values of two-parameter matrices: an algorithm to accurately find their intersections, Mathematics and Computers in Simulation, 79 (2008), 1255-1269. |
[20] | L. Dieci and A. Pugliese, Two-parameter SVD: Coalescing singular values and periodicity, SIAM J. Matrix Anal. Appl., 31 (2009), 375-403. |
[21] | E. Doedel, AUTO: A program for the automatic bifurcation analysis of autonomous systems, Congr. Numer., 30 (1981), 265-284. |
[22] | M. Gameiro, J.-P. Lessard and A. Pugliese, Computation of smooth manifolds via rigorous multi-parameter continuation in infinite dimensions, Found. Comput. Math., 16 (2016), 531-575. doi: 10.1007/s10208-015-9259-7. |
[23] | W. Govaerts, Numerical bifurcation analysis for ODEs, J. Comput. Appl. Math., 125 (2000), 57-68, Numerical analysis 2000, Vol. VI, Ordinary differential equations and integral equations. doi: 10.1016/S0377-0427(00)00458-1. |
[24] | E. Harjanto and J. M. Tuwankotta, Bifurcation of periodic solution in a predator–prey type of systems with non-monotonic response function and periodic perturbation, International Journal of Non-Linear Mechanics, 85 (2016), 188-196. doi: 10.1016/j.ijnonlinmec.2016.06.011. |
[25] | W. Hetebrij and J. D. Mireles James, Critical homoclinics in a restricted four-body problem: Numerical continuation and center manifold computations, Celestial Mech. Dynam. Astronom., 133 (2021), Paper No. 5, 48 pp. |
[26] | M. W. Hirsch, Differential Topology, Grad. Texts in Math., No. 33, Springer-Verlag, New York-Heidelberg, 1976. |
[27] | R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985. |
[28] | Y. Kanzawa and S. Oishi, Calculating bifurcation points with guaranteed accuracy, IEICE Trans. Fundamentals E82-A, 6 (1999), 1055-1061. |
[29] | H. B. Keller, Lectures on Numerical Methods in Bifurcation Problems, volume 79 of Tata Institute of Fundamental Research Lectures on Mathematics and Physics, Published for the Tata Institute of Fundamental Research, Bombay, 1987. With notes by A. K. Nandakumaran and Mythily Ramaswamy. |
[30] | S. Kepley, K. Mischaikow and E. Queirolo, Global analysis of regulatory network dynamics: equilibria and saddle-node bifurcations, arXiv: 2204.13739, 2024. |
[31] | H. Kokubu, D. Wilczak and P. Zgliczyński, Rigorous verification of cocoon bifurcations in the Michelson system, Nonlinearity, 20 (2007), 2147-2174. doi: 10.1088/0951-7715/20/9/008. |
[32] | C. Kuehn and E. Queirolo, Computer validation of neural network dynamics: A first case study, arXiv: 2202.05073, 2023. |
[33] | Yu. A. Kuznetsov, Two-parameter bifurcation analysis of equilibria and limit cycles with matcont, Tutorial IV. |
[34] | Yu. A. Kuznetsov, Numerical normalization techniques for all codim 2 bifurcations of equilibria in ODE's, SIAM J. Numer. Anal., 36 (1999), 1104-1124. doi: 10.1137/S0036142998335005. |
[35] | Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, volume 112 of Applied Mathematical Sciences, Springer-Verlag, New York, third edition, 2004. |
[36] | J. Lee, J. Lee, K. S. Farquhar, J. Yun, C. A. Frankenberger, E. Bevilacqua, K. Yeung, E.-J. Kim, G. Balázsi and M. R. Rosner, Network of mutually repressive metastasis regulators can promote cell heterogeneity and metastatic transitions, PNAS, 111 (2014), E364-E373. doi: 10.1073/pnas.1304840111. |
[37] | J.-P. Lessard, Rigorous verification of saddle-node bifurcations in ODEs, Indag. Math. (N.S.), 27 (2016), 1013-1026. doi: 10.1016/j.indag.2016.06.012. |
[38] | J.-P. Lessard, E. Sander and T. Wanner, Rigorous continuation of bifurcation points in the diblock copolymer equation, J. Comput. Dyn., 4 (2017), 71-118. doi: 10.3934/jcd.2017003. |
[39] | T. Minamoto and M. T. Nakao, Numerical method for verifying the existence and local uniqueness of a double turning point for a radially symmetric solution of the perturbed Gelfand equation, J. Comput. Appl. Math., 202 (2007), 177-185. doi: 10.1016/j.cam.2006.02.023. |
[40] | L. Owen and J. M. Tuwankotta, Computation of fold and cusp bifurcation points in a system of ordinary differential equations using the Lagrange multiplier method, Int. J. Dyn. Control, 10 (2022), 363-376. doi: 10.1007/s40435-021-00821-4. |
[41] | H. Poincaré, Mémoire sur les courbes définies par une équation différentielle (i), Journal de Mathématiques Pures et Appliquées, 7 (1881), 375-422. |
[42] | D. Roose and R. Piessens, Numerical computation of nonsimple turning points and cusps, Numer. Math., 46 (1985), 189-211. doi: 10.1007/BF01390419. |
[43] | K. Tanaka, S. Murashige and S. Oishi, On necessary and sufficient conditions for numerical verification of double turning points, Numer. Math., 97 (2004), 537-554. doi: 10.1007/s00211-003-0515-4. |
[44] | J. M. Tuwankotta and E. Harjanto, Strange attractors in a predator-prey system with non-monotonic response function and periodic perturbation, J. Comput. Dyn., 6 (2019), 469-483. doi: 10.3934/jcd.2019024. |
[45] | J. B. van den Berg, O. Hénot and J.-P. Lessard, Constructive proofs for localised radial solutions of semilinear elliptic systems on $\Bbb R^d$, Nonlinearity, 36 (2023), 6476-6512. doi: 10.1088/1361-6544/ad0278. |
[46] | J. B. van den Berg, W. Hetebrij and B. Rink, More on the parameterization method for center manifolds, arXiv: 2003.00701, 2020. |
[47] | J. B. van den Berg, W. Hetebrij and B. Rink, The parameterization method for center manifolds, J. Differential Equations, 269 (2020), 2132-2184. doi: 10.1016/j.jde.2020.01.033. |
[48] | J. B. van den Berg and J. Jaquette, A proof of Wright's conjecture, J. Differential Equations, 264 (2018), 7412-7462. doi: 10.1016/j.jde.2018.02.018. |
[49] | J. B. van den Berg, J.-P. Lessard and E. Queirolo, Rigorous verification of Hopf bifurcations via desingularization and continuation, SIAM J. Appl. Dyn. Syst., 20 (2021), 573-607. doi: 10.1137/20M1343464. |
[50] | J. B. van den Berg and E. Queirolo, Rigorous validation of a Hopf bifurcation in the Kuramoto-Sivashinsky PDE, Commun. Nonlinear Sci. Numer. Simul., 108 (2022), Paper No. 106133, 22 pp. |
[51] | T. Wanner, Computer-assisted bifurcation diagram validation and applications in materials science, In Rigorous Numerics in Dynamics, volume 74 of Proc. Sympos. Appl. Math., Amer. Math. Soc., Providence, RI, 2018,123-174. |
[52] | D. Wilczak and P. Zgliczyński, Period doubling in the Rössler system–-a computer assisted proof, Found. Comput. Math., 9 (2009), 611-649. doi: 10.1007/s10208-009-9040-x. |
[53] | N. Yamamoto, A numerical verification method for solutions of boundary value problems with local uniqueness by Banach's fixed-point theorem, SIAM J. Numer. Anal., 35 (1998), 2004-2013 (electronic). doi: 10.1137/S0036142996304498. |
[54] | P. Zgliczyński, Steady state bifurcations for the Kuramoto-Sivashinsky equation: a computer assisted proof, J. Comput. Dyn., 2 (2015), 95-142. |
[55] | H. Zhu, S. A. Campbell and G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 63 (2003), 636-682. doi: 10.1137/S0036139901397285. |
Visual sketch of the continuation procedure: in blue the first hexagonal patch, in yellow an incomplete patch centered at the "current point"
On the left the projection of the triangulation for the manifold of equilibria of (31) on the
On the left the projection of the triangulation of the manifold of equilibria of (33) on the
On the left the projection of the triangulation of the manifold of equilibria of (35) on the
On the left the projection of the triangulation of the manifold of equilibria of (36) on the