The $ k $-dimensional system of delayed discrete nonlinear equations with $ p $-Laplacian in the form
$ \left\{\begin{array}{l} \Delta \phi_{p_i} \left(x_i(n)+q_i(n)\,x_i(n-l_i)-C_i \right) = a_i(n)\,f_i(x_{i+1}(n-m_i))+b_i(n),\\ \Delta \phi_{p_k} \left(x_k(n)+q_k(n)\,x_k(n-l_k) -C_k \right) = a_k(n)\,f_k(x_1(n-m_k))+b_k(n), \end{array}\right. $
where $ i = 1,\dots,k-1 $, $ k\geq 2 $, is considered. This paper aims to present sufficient conditions for the existence of positive bounded persistent solutions of the above system with various $ (q_i(n)) $, $ i = 1,\dots,k $.
Citation: |
[1] |
R. P. Agarwal, M. Bohner, S. R. Grace and D. O'Regan, Discrete Oscillation Theory, Hindawi Publishing Corporation, New York, 2005.
![]() ![]() |
[2] |
R. Agarwal, D. O'Regan and P. Wong, Positive Solutions of Differential, Difference and Integral Equations, Kluwer Academic Publishers, Dordrecht, 1999.
doi: 10.1007/978-94-015-9171-3_23.![]() ![]() ![]() |
[3] |
R. Agarwal and P. Wong, Advanced Topics in Difference Equations, Math. Appl., 404, Kluwer Academic Publishers Group, Dordrecht, 1997.
![]() ![]() |
[4] |
C. Bereanu, P. Jebelean and C. Şerban, Periodic and Neumann problems for discrete $p(\cdot)$-Laplacian, J. Math. Anal. Appl., 399 (2013), 75-87.
doi: 10.1016/j.jmaa.2012.09.047.![]() ![]() ![]() |
[5] |
G. Bisci and D. Repovš, Existence of solutions for $p$-Laplacian discrete equations, Appl Math Comput., 242 (2014), 454-461.
doi: 10.1016/j.amc.2014.05.118.![]() ![]() ![]() |
[6] |
S. Cheng and W. Patula, An existence theorem for a nonlinear difference equation, Nonlinear Anal., 20 (1993), 193-203.
doi: 10.1016/0362-546X(93)90157-N.![]() ![]() ![]() |
[7] |
G. D'Agui, J. Mawhin and A. Sciammetta, Positive solutions for a discrete two point nonlinear boundary value problem with $p$-Laplacian, J. Math. Anal. Appl., 447 (2017), 383-397.
doi: 10.1016/j.jmaa.2016.10.023.![]() ![]() ![]() |
[8] |
L. Erbe, Q. Kong and B. Zhang, Oscillation Theory for Functional Differential Equations, Monogr. Textbooks Pure Appl. Math., 190, Marcel Dekker, Inc., New York, 1995.
![]() ![]() |
[9] |
M. Galewski and R. Wieteska, Existence and multiplicity results for boundary value problems connected with the discrete $p(\cdot)$-Laplacian on weighted finite graphs, Appl Math Comput., 290 (2016), 376-391.
doi: 10.1016/j.amc.2016.06.016.![]() ![]() ![]() |
[10] |
M. Galewski and R. Wieteska, Multiple solutions for periodic problems with the discrete $p(k)$-Laplacian, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2535-2547.
![]() ![]() |
[11] |
L. Kong, Homoclinic solutions for a second order difference equationwith $p$-Laplacian, Appl Math Comput., 247 (2014), 1113-1121.
doi: 10.1016/j.amc.2014.09.069.![]() ![]() ![]() |
[12] |
V. Lakshmikantham and D. Trigiante, Theory of Difference Equations: Numerical Methods and Applications, Math. Sci. Engrg., 181, Academic Press, Inc., Boston, MA, 1988.
![]() ![]() |
[13] |
M. Migda, E. Schmeidel and M. Zdanowicz, Bounded solutions of $k$-dimensional system of nonlinear difference equations of neutral type, Electron. J. Qual. Theory Differ. Equ., 2015 (2015), Paper No. 80, 17 pp.
![]() ![]() |
[14] |
P. Tu, Dynamical Systems: An Introduction with Applications in Economics and Biology, Springer-Verlag, Berlin, 1992.
![]() ![]() |