The paper deals with the boundary value problem for the $ 2n $-th order difference equation of the form
$ \Delta^n(p(t-n)\Delta^n x(t-n)) +f(t,x(t)) = 0, $
where $ t \in [1,T]_{{\mathbb Z}} $, and $ \Delta ^{k}x(1-n) = \Delta^{k} x(T-n+1) $, $ k = 0,1,\dots,2n-\; 1 $. Existence theorems for this equation are obtained based on the variational methods. A few examples illustrate the main results.
| Citation: |
| [1] |
R. P. Agarwal, Difference Equations and Inequalities, Theory, Methods, and Applications, 2$^{nd}$ edition, Monogr. Textbooks Pure Appl. Math., 228, Marcel Dekker, New York, 2000.
|
| [2] |
Z. AlSharawi, J. M. Cushing and S. Elaydi, Theory and Applications of Difference Equationsand Discrete Dynamical Systems, Springer Proc. Math. Stat., 102, Springer, Heidelberg, 2014.
|
| [3] |
E. Amorosoa, P. Candito and J. Mawhin, Existence of apriori bounded solutions for discrete two-point boundary value problems, J. Math. Anal. Appl., 519 (2023), 1-18.
|
| [4] |
A. Cabada and N. Dimitrov, Nontrivial solutions of inverse discrete problems with sign-changing nonlinearities, Adv. Differ. Equ., 2019 (2019), Article ID 450, 16 pp.
doi: 10.1186/s13662-019-2383-y.
|
| [5] |
A. Cabada and L. López-Somoza, Lower and upper solutions for even order boundaryvalue problems, Mathematics, 7 (2019), 878.
doi: 10.3390/math7100878.
|
| [6] |
A. Cabada and L. Saavedra, Constant sign solution for a simply supported beam equation, EJQTDE, 2017 (2017), Paper No. 59, 17 pp.
doi: 10.14232/ejqtde.2017.1.59.
|
| [7] |
X. Cai and J. Yu, Existence of periodic solutions for a $2n$th-order nonlinear difference equation, J. Math. Anal. Appl., 329 (2007), 870-878.
doi: 10.1016/j.jmaa.2006.07.022.
|
| [8] |
P. Drábek and J. Milota, Methods of Nonlinear Analysis. Applications to Differential Equations, Birkhäuser Verlag, Basel, 2007.
|
| [9] |
M. Galewski, Uniqueness of solutions for discrete boundary value problems, Dynam. Systems Appl., 22 (2013), 105-113.
|
| [10] |
M. Galewski and J. Smejda, Some remarks on nonlinear discrete boundary value problems, Demonstratio Math., 45 (2012), 575-583.
doi: 10.1515/dema-2013-0402.
|
| [11] |
M. Galewski and J. Smejda, A note on a fourth order discrete boundary value problem, Opuscula Math., 32 (2012), 115-123.
doi: 10.7494/OpMath.2012.32.1.115.
|
| [12] |
I. Győri and L. Horváth, Sharp algebraic periodicity conditions for linear higher order difference equations, Comput. Math. Appl., 64 (2012), 2262-2274.
doi: 10.1016/j.camwa.2012.02.018.
|
| [13] |
O. Hammouti, Existence and multiplicity of solutions for nonlinear $2n$-th order difference boundary value problems, J. Elliptic Parabol., 8 (2022), 1081-1097.
doi: 10.1007/s41808-022-00166-9.
|
| [14] |
W. G. Kelley and A. C. Peterson, Difference Equations. An Introduction with Applications, 2nd edition, Harcourt/Academic Press, San Diego, CA, 2001.
|
| [15] |
Y. Liu and X. Liu, The existence of periodic solutions of higherorder nonlinear periodic difference equations, Math. Methods Appl. Sci., 36 (2013), 1459-1470.
doi: 10.1002/mma.2700.
|
| [16] |
P. Stehlík, On periodic disrete boundary value problems, J. Difference Equ. Appl., 14 (2008), 259-273.
|
| [17] |
P. Stehlík, On variational methods for second order discrete periodic problems, Advances in Discrete Dynamical Systems, Adv. Stud. Pure Math., Mathematical Society of Japan, Tokyo, 53 (2009), 339-346.
|
| [18] |
M. You, Y. Tian, Y. Yue and J. Liu, Existence Results of Multiple Solutions for a $2n$th-OrderFinite Difference Equation, Bull. Malays. Math. Sci. Soc., 43 (2020), 2887-2907.
doi: 10.1007/s40840-019-00836-3.
|