March  2008, 1(1): 117-126. doi: 10.3934/dcdss.2008.1.117

A class of hemivariational inequalities for electroelastic contact problems with slip dependent friction

1. 

Jagiellonian University, Faculty of Mathematics and Computer Science, Institute of Computer Science, ul. Nawojki 11, 30-072 Krakow

Received  July 2006 Revised  September 2007 Published  December 2007

In this paper we deal with a class of inequality problems for static frictional contact between a piezoelastic body and a foundation. The constitutive law is assumed to be electrostatic and involves a nonlinear elasticity operator. The friction condition is described by the Clarke subdifferential relations of nonmonotone and multivalued character in the tangential directions on the boundary. We derive a variational formulation which is a coupled system of a hemivariational inequality and an elliptic equation. The existence of solutions to the model is a consequence of a more general result obtained from the theory of pseudomonotone mappings.
Citation: Stanislaw Migórski. A class of hemivariational inequalities for electroelastic contact problems with slip dependent friction. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 117-126. doi: 10.3934/dcdss.2008.1.117
[1]

Stanislaw Migórski. Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1339-1356. doi: 10.3934/dcdsb.2006.6.1339

[2]

Stanislaw Migórski, Anna Ochal, Mircea Sofonea. Analysis of a dynamic Elastic-Viscoplastic contact problem with friction. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 887-902. doi: 10.3934/dcdsb.2008.10.887

[3]

Marius Cocou. A dynamic viscoelastic problem with friction and rate-depending contact interactions. Evolution Equations & Control Theory, 2020, 9 (4) : 981-993. doi: 10.3934/eect.2020060

[4]

Leszek Gasiński, Piotr Kalita. On dynamic contact problem with generalized Coulomb friction, normal compliance and damage. Evolution Equations & Control Theory, 2020, 9 (4) : 1009-1026. doi: 10.3934/eect.2020049

[5]

Stanisław Migórski. A note on optimal control problem for a hemivariational inequality modeling fluid flow. Conference Publications, 2013, 2013 (special) : 545-554. doi: 10.3934/proc.2013.2013.545

[6]

Zhenhai Liu, Stanislaw Migórski. Noncoercive damping in dynamic hemivariational inequality with application to problem of piezoelectricity. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 129-143. doi: 10.3934/dcdsb.2008.9.129

[7]

Leszek Gasiński. Optimal control problem of Bolza-type for evolution hemivariational inequality. Conference Publications, 2003, 2003 (Special) : 320-326. doi: 10.3934/proc.2003.2003.320

[8]

Krzysztof Bartosz. Numerical analysis of a nonmonotone dynamic contact problem of a non-clamped piezoelectric viscoelastic body. Evolution Equations & Control Theory, 2020, 9 (4) : 961-980. doi: 10.3934/eect.2020059

[9]

Patrick Ballard. Can the 'stick-slip' phenomenon be explained by a bifurcation in the steady sliding frictional contact problem?. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 363-381. doi: 10.3934/dcdss.2016001

[10]

Géry de Saxcé. Modelling contact with isotropic and anisotropic friction by the bipotential approach. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 409-425. doi: 10.3934/dcdss.2016004

[11]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[12]

Zijia Peng, Cuiming Ma, Zhonghui Liu. Existence for a quasistatic variational-hemivariational inequality. Evolution Equations & Control Theory, 2020, 9 (4) : 1153-1165. doi: 10.3934/eect.2020058

[13]

Alain Léger, Elaine Pratt. On the equilibria and qualitative dynamics of a forced nonlinear oscillator with contact and friction. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 501-527. doi: 10.3934/dcdss.2016009

[14]

Lijing Xi, Yuying Zhou, Yisheng Huang. A class of quasilinear elliptic hemivariational inequality problems on unbounded domains. Journal of Industrial & Management Optimization, 2014, 10 (3) : 827-837. doi: 10.3934/jimo.2014.10.827

[15]

Changjie Fang, Weimin Han. Stability analysis and optimal control of a stationary Stokes hemivariational inequality. Evolution Equations & Control Theory, 2020, 9 (4) : 995-1008. doi: 10.3934/eect.2020046

[16]

David Yang Gao. Sufficient conditions and perfect duality in nonconvex minimization with inequality constraints. Journal of Industrial & Management Optimization, 2005, 1 (1) : 53-63. doi: 10.3934/jimo.2005.1.53

[17]

Zhenhai Liu, Van Thien Nguyen, Jen-Chih Yao, Shengda Zeng. History-dependent differential variational-hemivariational inequalities with applications to contact mechanics. Evolution Equations & Control Theory, 2020, 9 (4) : 1073-1087. doi: 10.3934/eect.2020044

[18]

Changjie Fang, Weimin Han. Well-posedness and optimal control of a hemivariational inequality for nonstationary Stokes fluid flow. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5369-5386. doi: 10.3934/dcds.2016036

[19]

Amina Amassad, Mircea Sofonea. Analysis of a quasistatic viscoplastic problem involving tresca friction law. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 55-72. doi: 10.3934/dcds.1998.4.55

[20]

Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (20)

Other articles
by authors

[Back to Top]