
Previous Article
Uniqueness of the principal eigenvalue in nonlocal boundary value problems
 DCDSS Home
 This Issue

Next Article
3D steady compressible NavierStokes equations
Twoequation model of mean flow resonances in subcritical flow systems
1.  Department of Mathematics and Computing and Computational Engineering and Science Research Centre, University of Southern Queensland, Toowoomba, Queensland 4350, Australia 
[1] 
Eric S. Wright. Macrotransport in nonlinear, reactive, shear flows. Communications on Pure & Applied Analysis, 2012, 11 (5) : 21252146. doi: 10.3934/cpaa.2012.11.2125 
[2] 
Zhenlu Cui, Qi Wang. Permeation flows in cholesteric liquid crystal polymers under oscillatory shear. Discrete & Continuous Dynamical Systems  B, 2011, 15 (1) : 4560. doi: 10.3934/dcdsb.2011.15.45 
[3] 
Alex Mahalov, Mohamed Moustaoui, Basil Nicolaenko. Threedimensional instabilities in nonparallel shear stratified flows. Kinetic & Related Models, 2009, 2 (1) : 215229. doi: 10.3934/krm.2009.2.215 
[4] 
JaeHong Pyo, Jie Shen. Normal mode analysis of secondorder projection methods for incompressible flows. Discrete & Continuous Dynamical Systems  B, 2005, 5 (3) : 817840. doi: 10.3934/dcdsb.2005.5.817 
[5] 
M. Bulíček, P. Kaplický. Incompressible fluids with shear rate and pressure dependent viscosity: Regularity of steady planar flows. Discrete & Continuous Dynamical Systems  S, 2008, 1 (1) : 4150. doi: 10.3934/dcdss.2008.1.41 
[6] 
James Nolen, Jack Xin. Existence of KPP type fronts in spacetime periodic shear flows and a study of minimal speeds based on variational principle. Discrete & Continuous Dynamical Systems  A, 2005, 13 (5) : 12171234. doi: 10.3934/dcds.2005.13.1217 
[7] 
Xavier Perrot, Xavier Carton. Pointvortex interaction in an oscillatory deformation field: Hamiltonian dynamics, harmonic resonance and transition to chaos. Discrete & Continuous Dynamical Systems  B, 2009, 11 (4) : 971995. doi: 10.3934/dcdsb.2009.11.971 
[8] 
Thierry Gallay. Stability and interaction of vortices in twodimensional viscous flows. Discrete & Continuous Dynamical Systems  S, 2012, 5 (6) : 10911131. doi: 10.3934/dcdss.2012.5.1091 
[9] 
Siwei Yu, Jianwei Ma, Stanley Osher. Geometric mode decomposition. Inverse Problems & Imaging, 2018, 12 (4) : 831852. doi: 10.3934/ipi.2018035 
[10] 
Hong Zhou, M. Gregory Forest, Qi Wang. Anchoringinduced texture & shear banding of nematic polymers in shear cells. Discrete & Continuous Dynamical Systems  B, 2007, 8 (3) : 707733. doi: 10.3934/dcdsb.2007.8.707 
[11] 
Vicenţiu D. Rădulescu. Noncoercive elliptic equations with subcritical growth. Discrete & Continuous Dynamical Systems  S, 2012, 5 (4) : 857864. doi: 10.3934/dcdss.2012.5.857 
[12] 
Jonathan H. Tu, Clarence W. Rowley, Dirk M. Luchtenburg, Steven L. Brunton, J. Nathan Kutz. On dynamic mode decomposition: Theory and applications. Journal of Computational Dynamics, 2014, 1 (2) : 391421. doi: 10.3934/jcd.2014.1.391 
[13] 
Steven L. Brunton, Joshua L. Proctor, Jonathan H. Tu, J. Nathan Kutz. Compressed sensing and dynamic mode decomposition. Journal of Computational Dynamics, 2015, 2 (2) : 165191. doi: 10.3934/jcd.2015002 
[14] 
Hao Zhang, Scott T. M. Dawson, Clarence W. Rowley, Eric A. Deem, Louis N. Cattafesta. Evaluating the accuracy of the dynamic mode decomposition. Journal of Computational Dynamics, 2019, 0 (0) : 00. doi: 10.3934/jcd.2020002 
[15] 
Raphael Stuhlmeier. Effects of shear flow on KdV balance  applications to tsunami. Communications on Pure & Applied Analysis, 2012, 11 (4) : 15491561. doi: 10.3934/cpaa.2012.11.1549 
[16] 
Jijiang Sun, ChunLei Tang. Resonance problems for Kirchhoff type equations. Discrete & Continuous Dynamical Systems  A, 2013, 33 (5) : 21392154. doi: 10.3934/dcds.2013.33.2139 
[17] 
Sergiu Aizicovici, Nikolaos S. Papageorgiou, Vasile Staicu. Nonlinear Dirichlet problems with double resonance. Communications on Pure & Applied Analysis, 2017, 16 (4) : 11471168. doi: 10.3934/cpaa.2017056 
[18] 
Leszek Gasiński, Nikolaos S. Papageorgiou. Dirichlet $(p,q)$equations at resonance. Discrete & Continuous Dynamical Systems  A, 2014, 34 (5) : 20372060. doi: 10.3934/dcds.2014.34.2037 
[19] 
D. Bonheure, C. Fabry. A variational approach to resonance for asymmetric oscillators. Communications on Pure & Applied Analysis, 2007, 6 (1) : 163181. doi: 10.3934/cpaa.2007.6.163 
[20] 
Philip Korman. Curves of equiharmonic solutions, and problems at resonance. Discrete & Continuous Dynamical Systems  A, 2014, 34 (7) : 28472860. doi: 10.3934/dcds.2014.34.2847 
2018 Impact Factor: 0.545
Tools
Metrics
Other articles
by authors
[Back to Top]