March  2008, 1(1): 165-176. doi: 10.3934/dcdss.2008.1.165

Two-equation model of mean flow resonances in subcritical flow systems


Department of Mathematics and Computing and Computational Engineering and Science Research Centre, University of Southern Queensland, Toowoomba, Queensland 4350, Australia

Received  September 2006 Revised  August 2007 Published  December 2007

Amplitude equations of Landau type, which describe the dynamics of the most amplified periodic disturbance waves in slightly supercritical flow systems, have been known to form reliable and sufficiently accurate low-dimensional models capable of predicting the asymptotic magnitude of saturated perturbations. However the derivation of similar models for estimating the threshold disturbance amplitude in subcritical systems faces multiple resonances which lead to the singularity of model coefficients. The observed resonances are traced back to the interaction between the mean flow distortion induced by the decaying fundamental disturbance harmonic and other decaying disturbance modes. Here we suggest a methodology of deriving a two-equation dynamical system of coupled cubic amplitude equations with non-singular coefficients which resolve the resonances and are capable of predicting the threshold amplitude for weakly nonlinear subcritical regimes. The suggested reduction procedure is based on the consistent use of an appropriate orthogonality condition which is different from a conventional solvability condition. As an example, a developed procedure is applied to a system of Navier-Stokes equations describing a subcritical plane Poiseuille flow. Predictions of the so-developed model are found to be in reasonable agreement with experimentally detected threshold amplitudes reported in literature.
Citation: Sergey A. Suslov. Two-equation model of mean flow resonances in subcritical flow systems. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 165-176. doi: 10.3934/dcdss.2008.1.165

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098


Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216


Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268


Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167


Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467


Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328


Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327


Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

2019 Impact Factor: 1.233


  • PDF downloads (41)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]