-
Previous Article
A semilinear $A$-spectrum
- DCDS-S Home
- This Issue
-
Next Article
Delay equations and nonuniform exponential stability
A priori estimate for the Nirenberg problem
1. | Department of Mathematics, Yeshiva University, 500 W 185th Street, New York, NY 10033 |
2. | Department of Applied Mathematics, University of Colorado at Boulder, Boulder, CO 80309-0524 |
$ - \Delta u + 1 = K(x) e^{2u}, x \in S^2,$ (1)
for functions $K(x)$ which are allowed to change signs. In [16], Chang, Gursky and Yang obtained a priori estimate for the solution of (1) under the condition that the function K(x) be positive and bounded away from 0. This technical assumption was used to guarantee a uniform bound on the energy of the solutions. The main objective of our paper is to remove this well-known assumption. Using the method of moving planes in a local way, we are able to control the growth of the solutions in the region where K is negative and in the region where K is small and thus obtain a priori estimate on the solutions of (1) for general functions K with changing signs.
[1] |
Meng Qu, Jiayan Wu, Ting Zhang. Sliding method for the semi-linear elliptic equations involving the uniformly elliptic nonlocal operators. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2285-2300. doi: 10.3934/dcds.2020362 |
[2] |
Li Ma, Lin Zhao. Regularity for positive weak solutions to semi-linear elliptic equations. Communications on Pure and Applied Analysis, 2008, 7 (3) : 631-643. doi: 10.3934/cpaa.2008.7.631 |
[3] |
Xiaoxue Ji, Pengcheng Niu, Pengyan Wang. Non-existence results for cooperative semi-linear fractional system via direct method of moving spheres. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1111-1128. doi: 10.3934/cpaa.2020051 |
[4] |
Paul Sacks, Mahamadi Warma. Semi-linear elliptic and elliptic-parabolic equations with Wentzell boundary conditions and $L^1$-data. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 761-787. doi: 10.3934/dcds.2014.34.761 |
[5] |
Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015 |
[6] |
Jesus Idelfonso Díaz, Jean Michel Rakotoson. On very weak solutions of semi-linear elliptic equations in the framework of weighted spaces with respect to the distance to the boundary. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1037-1058. doi: 10.3934/dcds.2010.27.1037 |
[7] |
Houda Mokrani. Semi-linear sub-elliptic equations on the Heisenberg group with a singular potential. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1619-1636. doi: 10.3934/cpaa.2009.8.1619 |
[8] |
Masataka Shibata. Multiplicity of positive solutions to semi-linear elliptic problems on metric graphs. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4107-4126. doi: 10.3934/cpaa.2021147 |
[9] |
Út V. Lê. Contraction-Galerkin method for a semi-linear wave equation. Communications on Pure and Applied Analysis, 2010, 9 (1) : 141-160. doi: 10.3934/cpaa.2010.9.141 |
[10] |
Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083 |
[11] |
Jean-Daniel Djida, Arran Fernandez, Iván Area. Well-posedness results for fractional semi-linear wave equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 569-597. doi: 10.3934/dcdsb.2019255 |
[12] |
Nguyen Thieu Huy, Vu Thi Ngoc Ha, Pham Truong Xuan. Boundedness and stability of solutions to semi-linear equations and applications to fluid dynamics. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2103-2116. doi: 10.3934/cpaa.2016029 |
[13] |
Guangyue Huang, Wenyi Chen. Uniqueness for the solution of semi-linear elliptic Neumann problems in $\mathbb R^3$. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1269-1273. doi: 10.3934/cpaa.2008.7.1269 |
[14] |
Y. Kabeya, Eiji Yanagida, Shoji Yotsutani. Canonical forms and structure theorems for radial solutions to semi-linear elliptic problems. Communications on Pure and Applied Analysis, 2002, 1 (1) : 85-102. doi: 10.3934/cpaa.2002.1.85 |
[15] |
Audric Drogoul, Gilles Aubert. The topological gradient method for semi-linear problems and application to edge detection and noise removal. Inverse Problems and Imaging, 2016, 10 (1) : 51-86. doi: 10.3934/ipi.2016.10.51 |
[16] |
Baiyu Liu. Direct method of moving planes for logarithmic Laplacian system in bounded domains. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5339-5349. doi: 10.3934/dcds.2018235 |
[17] |
Pengyan Wang, Pengcheng Niu. A direct method of moving planes for a fully nonlinear nonlocal system. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1707-1718. doi: 10.3934/cpaa.2017082 |
[18] |
Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1871-1897. doi: 10.3934/dcdss.2020462 |
[19] |
Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661 |
[20] |
Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control and Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]