• Previous Article
    Stokes and Oseen flow with Coriolis force in the exterior domain
  • DCDS-S Home
  • This Issue
  • Next Article
    Modeling thermal effects on nonlinear wave motion in biopolymers by a stochastic discrete nonlinear Schrödinger equation with phase damping
June  2008, 1(2): 329-338. doi: 10.3934/dcdss.2008.1.329

Generalizations of logarithmic Sobolev inequalities

1. 

Universität Rostock, Institut für Mathematik, Universitätsplatz 1, 18051 Rostock, Germany

Received  September 2006 Revised  April 2007 Published  March 2008

We generalize logarithmic Sobolev inequalities to logarithmic Gagliardo-Nirenberg inequalities, and apply these inequalities to prove ultracontractivity of the semigroup generated by the doubly nonlinear $p$-Laplacian

$\dot{u}=\Delta_p u^m.$

Our proof does not use Moser iteration, but shows that the time-dependent Lebesgue norm $\||u(t)|\|_{r(t)}$ stays bounded for a variable exponent $r(t)$ blowing up in arbitrary short time.

Citation: Jochen Merker. Generalizations of logarithmic Sobolev inequalities. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 329-338. doi: 10.3934/dcdss.2008.1.329
[1]

Shun Uchida. Solvability of doubly nonlinear parabolic equation with p-laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021033

[2]

Zhong Tan, Zheng-An Yao. The existence and asymptotic behavior of the evolution p-Laplacian equations with strong nonlinear sources. Communications on Pure & Applied Analysis, 2004, 3 (3) : 475-490. doi: 10.3934/cpaa.2004.3.475

[3]

Simona Fornaro, Maria Sosio, Vincenzo Vespri. Harnack type inequalities for some doubly nonlinear singular parabolic equations. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 5909-5926. doi: 10.3934/dcds.2015.35.5909

[4]

Antonio Segatti. Global attractor for a class of doubly nonlinear abstract evolution equations. Discrete & Continuous Dynamical Systems, 2006, 14 (4) : 801-820. doi: 10.3934/dcds.2006.14.801

[5]

Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046

[6]

C. Fabry, Raul Manásevich. Equations with a $p$-Laplacian and an asymmetric nonlinear term. Discrete & Continuous Dynamical Systems, 2001, 7 (3) : 545-557. doi: 10.3934/dcds.2001.7.545

[7]

Goro Akagi. Doubly nonlinear evolution equations and Bean's critical-state model for type-II superconductivity. Conference Publications, 2005, 2005 (Special) : 30-39. doi: 10.3934/proc.2005.2005.30

[8]

Noriaki Yamazaki. Doubly nonlinear evolution equations associated with elliptic-parabolic free boundary problems. Conference Publications, 2005, 2005 (Special) : 920-929. doi: 10.3934/proc.2005.2005.920

[9]

Zuodong Yang, Jing Mo, Subei Li. Positive solutions of $p$-Laplacian equations with nonlinear boundary condition. Discrete and Continuous Dynamical Systems - Series B, 2011, 16 (2) : 623-636. doi: 10.3934/dcdsb.2011.16.623

[10]

B. Abdellaoui, I. Peral. On quasilinear elliptic equations related to some Caffarelli-Kohn-Nirenberg inequalities. Communications on Pure & Applied Analysis, 2003, 2 (4) : 539-566. doi: 10.3934/cpaa.2003.2.539

[11]

Kerstin Does. An evolution equation involving the normalized $P$-Laplacian. Communications on Pure & Applied Analysis, 2011, 10 (1) : 361-396. doi: 10.3934/cpaa.2011.10.361

[12]

Angela A. Albanese, Elisabetta M. Mangino. Analytic semigroups and some degenerate evolution equations defined on domains with corners. Discrete & Continuous Dynamical Systems, 2015, 35 (2) : 595-615. doi: 10.3934/dcds.2015.35.595

[13]

Goro Akagi. Doubly nonlinear parabolic equations involving variable exponents. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 1-16. doi: 10.3934/dcdss.2014.7.1

[14]

Alessandro Audrito. Bistable reaction equations with doubly nonlinear diffusion. Discrete & Continuous Dynamical Systems, 2019, 39 (6) : 2977-3015. doi: 10.3934/dcds.2019124

[15]

Agnid Banerjee, Nicola Garofalo. On the Dirichlet boundary value problem for the normalized $p$-laplacian evolution. Communications on Pure & Applied Analysis, 2015, 14 (1) : 1-21. doi: 10.3934/cpaa.2015.14.1

[16]

Vincenzo Ambrosio, Teresa Isernia. Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional p-Laplacian. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5835-5881. doi: 10.3934/dcds.2018254

[17]

Giuseppina Barletta, Roberto Livrea, Nikolaos S. Papageorgiou. A nonlinear eigenvalue problem for the periodic scalar $p$-Laplacian. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1075-1086. doi: 10.3934/cpaa.2014.13.1075

[18]

Hugo Beirão da Veiga, Francesca Crispo. On the global regularity for nonlinear systems of the $p$-Laplacian type. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1173-1191. doi: 10.3934/dcdss.2013.6.1173

[19]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3851-3863. doi: 10.3934/dcdss.2020445

[20]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2021, 14 (6) : 1945-1966. doi: 10.3934/dcdss.2020469

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (132)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]