• Previous Article
    A mathematical analysis of a dynamical frictional contact model in thermoviscoelasticity
  • DCDS-S Home
  • This Issue
  • Next Article
    Incompressible fluids with shear rate and pressure dependent viscosity: Regularity of steady planar flows
March  2008, 1(1): 51-59. doi: 10.3934/dcdss.2008.1.51

Control of travelling walls in a ferromagnetic nanowire

1. 

MAB, UMR 5466, CNRS, Université Bordeaux 1, 351, cours de la Libération, 33405 Talence cedex

2. 

Université Paris-Sud, Labo. Math., Bat. 425, 91405 Orsay Cedex, France

3. 

Université d’Orléans, UFR Sciences, Fédération Denis Poisson Mathématiques, Laboratoire MAPMO, UMR 6628, Route de Chartres, BP 6759, 45067 Orléans Cedex 2, France

Received  July 2006 Revised  September 2007 Published  December 2007

We investigate the problem of controlling the magnetic moment in a ferromagnetic nanowire submitted to an external magnetic field in the direction of the nanowire. The system is modeled with the one dimensional Landau-Lifschitz equation. In the absence of control, there exist particular solutions, which happen to be relevant for practical issues, called travelling walls. In this paper, we prove that it is possible to move from a given travelling wall profile to any other one, by acting on the external magnetic field. The control laws are simple and explicit, and the resulting trajectories are shown to be stable.
Citation: Gilles Carbou, Stéphane Labbé, Emmanuel Trélat. Control of travelling walls in a ferromagnetic nanowire. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 51-59. doi: 10.3934/dcdss.2008.1.51
[1]

Gaël Bonithon. Landau-Lifschitz-Gilbert equation with applied eletric current. Conference Publications, 2007, 2007 (Special) : 138-144. doi: 10.3934/proc.2007.2007.138

[2]

Thierry Goudon, Frédéric Lagoutière, Léon M. Tine. The Lifschitz-Slyozov equation with space-diffusion of monomers. Kinetic and Related Models, 2012, 5 (2) : 325-355. doi: 10.3934/krm.2012.5.325

[3]

Evelyne Miot, Mario Pulvirenti, Chiara Saffirio. On the Kac model for the Landau equation. Kinetic and Related Models, 2011, 4 (1) : 333-344. doi: 10.3934/krm.2011.4.333

[4]

D. Blömker, S. Maier-Paape, G. Schneider. The stochastic Landau equation as an amplitude equation. Discrete and Continuous Dynamical Systems - B, 2001, 1 (4) : 527-541. doi: 10.3934/dcdsb.2001.1.527

[5]

Kay Kirkpatrick. Rigorous derivation of the Landau equation in the weak coupling limit. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1895-1916. doi: 10.3934/cpaa.2009.8.1895

[6]

Immanuel Ben Porat. Local conditional regularity for the Landau equation with Coulomb potential. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022010

[7]

Kleber Carrapatoso. Propagation of chaos for the spatially homogeneous Landau equation for Maxwellian molecules. Kinetic and Related Models, 2016, 9 (1) : 1-49. doi: 10.3934/krm.2016.9.1

[8]

Yoshinori Morimoto, Chao-Jiang Xu. Analytic smoothing effect for the nonlinear Landau equation of Maxwellian molecules. Kinetic and Related Models, 2020, 13 (5) : 951-978. doi: 10.3934/krm.2020033

[9]

Yoshinori Morimoto, Karel Pravda-Starov, Chao-Jiang Xu. A remark on the ultra-analytic smoothing properties of the spatially homogeneous Landau equation. Kinetic and Related Models, 2013, 6 (4) : 715-727. doi: 10.3934/krm.2013.6.715

[10]

N. Maaroufi. Topological entropy by unit length for the Ginzburg-Landau equation on the line. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 647-662. doi: 10.3934/dcds.2014.34.647

[11]

Cong He, Hongjun Yu. Large time behavior of the solution to the Landau Equation with specular reflective boundary condition. Kinetic and Related Models, 2013, 6 (3) : 601-623. doi: 10.3934/krm.2013.6.601

[12]

Hans G. Kaper, Peter Takáč. Bifurcating vortex solutions of the complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 871-880. doi: 10.3934/dcds.1999.5.871

[13]

Jingna Li, Li Xia. The Fractional Ginzburg-Landau equation with distributional initial data. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2173-2187. doi: 10.3934/cpaa.2013.12.2173

[14]

Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure and Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665

[15]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic and Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[16]

Jun Yang. Vortex structures for Klein-Gordon equation with Ginzburg-Landau nonlinearity. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2359-2388. doi: 10.3934/dcds.2014.34.2359

[17]

Noboru Okazawa, Tomomi Yokota. Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 311-341. doi: 10.3934/dcds.2010.28.311

[18]

Catherine Choquet, Mohammed Moumni, Mouhcine Tilioua. Homogenization of the Landau-Lifshitz-Gilbert equation in a contrasted composite medium. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 35-57. doi: 10.3934/dcdss.2018003

[19]

Jungho Park. Bifurcation and stability of the generalized complex Ginzburg--Landau equation. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1237-1253. doi: 10.3934/cpaa.2008.7.1237

[20]

Radjesvarane Alexandre, Jie Liao, Chunjin Lin. Some a priori estimates for the homogeneous Landau equation with soft potentials. Kinetic and Related Models, 2015, 8 (4) : 617-650. doi: 10.3934/krm.2015.8.617

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (67)
  • HTML views (0)
  • Cited by (6)

[Back to Top]