# American Institute of Mathematical Sciences

• Previous Article
Interior regularity of the compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum
• DCDS-S Home
• This Issue
• Next Article
Robust exponential attractors and convergence to equilibria for non-isothermal Cahn-Hilliard equations with dynamic boundary conditions
March  2009, 2(1): 149-161. doi: 10.3934/dcdss.2009.2.149

## Finite dimensionality of a Klein-Gordon-Schrödinger type system

 1 Department of Mathematics, National Technical University, Zografou Campus 157 80, Athens, Greece 2 Department of Mathematics, National Technical University, Zografou Campus 157 80, Athens, Hellas, Greece

Received  February 2008 Revised  October 2008 Published  January 2009

In this paper we study the finite dimensionality of the global attractor for the following system of Klein-Gordon-Schrödinger type

$i\psi_t +\kappa \psi_{xx} +i\alpha\psi = \phi\psi+f,$
$\phi_{tt}- \phi_{xx}+\phi+\lambda\phi_t = -Re \psi_{x}+g,$
$\psi (x,0)=\psi_0 (x), \phi(x,0) = \phi_0 (x), \phi_t (x,0)=\phi_1(x),$
$\psi(x,t)= \phi(x,t)=0, x \in \partial \Omega, t>0,$

where $x \in \Omega, t>0, \kappa > 0, \alpha >0, \lambda >0,$ $f$ and $g$ are driving terms and $\Omega$ is a bounded interval of R With the help of the Lyapunov exponents we give an estimate of the upper bound of its Hausdorff and Fractal dimension.

Citation: Marilena N. Poulou, Nikolaos M. Stavrakakis. Finite dimensionality of a Klein-Gordon-Schrödinger type system. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 149-161. doi: 10.3934/dcdss.2009.2.149
 [1] Salah Missaoui, Ezzeddine Zahrouni. Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system with cubic nonlinearities in $\mathbb{R}^2$. Communications on Pure and Applied Analysis, 2015, 14 (2) : 695-716. doi: 10.3934/cpaa.2015.14.695 [2] Fábio Natali, Ademir Pastor. Orbital stability of periodic waves for the Klein-Gordon-Schrödinger system. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 221-238. doi: 10.3934/dcds.2011.31.221 [3] Salah Missaoui. Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system in $\mathbb{R}^3$ nonlinear KGS system. Communications on Pure and Applied Analysis, 2022, 21 (2) : 567-584. doi: 10.3934/cpaa.2021189 [4] E. Compaan, N. Tzirakis. Low-regularity global well-posedness for the Klein-Gordon-Schrödinger system on $\mathbb{R}^+$. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3867-3895. doi: 10.3934/dcds.2019156 [5] Fábio Natali, Ademir Pastor. Stability properties of periodic standing waves for the Klein-Gordon-Schrödinger system. Communications on Pure and Applied Analysis, 2010, 9 (2) : 413-430. doi: 10.3934/cpaa.2010.9.413 [6] Weizhu Bao, Chunmei Su. Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes. Kinetic and Related Models, 2018, 11 (4) : 1037-1062. doi: 10.3934/krm.2018040 [7] Ahmed Y. Abdallah. Asymptotic behavior of the Klein-Gordon-Schrödinger lattice dynamical systems. Communications on Pure and Applied Analysis, 2006, 5 (1) : 55-69. doi: 10.3934/cpaa.2006.5.55 [8] Pavlos Xanthopoulos, Georgios E. Zouraris. A linearly implicit finite difference method for a Klein-Gordon-Schrödinger system modeling electron-ion plasma waves. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 239-263. doi: 10.3934/dcdsb.2008.10.239 [9] Caidi Zhao, Gang Xue, Grzegorz Łukaszewicz. Pullback attractors and invariant measures for discrete Klein-Gordon-Schrödinger equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 4021-4044. doi: 10.3934/dcdsb.2018122 [10] Ji Shu. Random attractors for stochastic discrete Klein-Gordon-Schrödinger equations driven by fractional Brownian motions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1587-1599. doi: 10.3934/dcdsb.2017077 [11] A. F. Almeida, M. M. Cavalcanti, J. P. Zanchetta. Exponential decay for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2039-2061. doi: 10.3934/cpaa.2018097 [12] Adriana Flores de Almeida, Marcelo Moreira Cavalcanti, Janaina Pedroso Zanchetta. Exponential stability for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping. Evolution Equations and Control Theory, 2019, 8 (4) : 847-865. doi: 10.3934/eect.2019041 [13] Ahmed Y. Abdallah, Taqwa M. Al-Khader, Heba N. Abu-Shaab. Attractors of the Klein-Gordon-Schrödinger lattice systems with almost periodic nonlinear part. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022006 [14] Zehan Lin, Chongbin Xu, Caidi Zhao, Chujin Li. Statistical solution and Kolmogorov entropy for the impulsive discrete Klein-Gordon-Schrödinger-type equations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022065 [15] Marilena N. Poulou, Nikolaos M. Stavrakakis. Global attractor for a Klein-Gordon-Schrodinger type system. Conference Publications, 2007, 2007 (Special) : 844-854. doi: 10.3934/proc.2007.2007.844 [16] Yang Han. On the cauchy problem for the coupled Klein Gordon Schrödinger system with rough data. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 233-242. doi: 10.3934/dcds.2005.12.233 [17] Hartmut Pecher. Low regularity well-posedness for the 3D Klein - Gordon - Schrödinger system. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1081-1096. doi: 10.3934/cpaa.2012.11.1081 [18] Olivier Goubet, Marilena N. Poulou. Semi discrete weakly damped nonlinear Klein-Gordon Schrödinger system. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1525-1539. doi: 10.3934/cpaa.2014.13.1525 [19] P. D'Ancona. On large potential perturbations of the Schrödinger, wave and Klein–Gordon equations. Communications on Pure and Applied Analysis, 2020, 19 (1) : 609-640. doi: 10.3934/cpaa.2020029 [20] Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey Schrödinger equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 2977-2996. doi: 10.3934/dcdsb.2020216

2020 Impact Factor: 2.425