-
Previous Article
An example of Kakutani equivalent and strong orbit equivalent substitution systems that are not conjugate
- DCDS-S Home
- This Issue
-
Next Article
Preface
Measured topological orbit and Kakutani equivalence
1. | Department of Mathematics, University of Toronto, Toronto, Ontario, Canada |
2. | Department of Mathematics, Colorado State University, Fort Collins, CO 80523, United States |
3. | Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904 |
[1] |
Mrinal Kanti Roychowdhury, Daniel J. Rudolph. Nearly continuous Kakutani equivalence of adding machines. Journal of Modern Dynamics, 2009, 3 (1) : 103-119. doi: 10.3934/jmd.2009.3.103 |
[2] |
Kengo Matsumoto. Continuous orbit equivalence of topological Markov shifts and KMS states on Cuntz–Krieger algebras. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5897-5909. doi: 10.3934/dcds.2020251 |
[3] |
Kengo Matsumoto. Cohomology groups, continuous full groups and continuous orbit equivalence of topological Markov shifts. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 841-862. doi: 10.3934/dcds.2021139 |
[4] |
Luis Barreira, Liviu Horia Popescu, Claudia Valls. Generalized exponential behavior and topological equivalence. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3023-3042. doi: 10.3934/dcdsb.2017161 |
[5] |
Giuseppe Buttazzo, Luigi De Pascale, Ilaria Fragalà. Topological equivalence of some variational problems involving distances. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 247-258. doi: 10.3934/dcds.2001.7.247 |
[6] |
Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure and Applied Analysis, 2021, 20 (2) : 511-532. doi: 10.3934/cpaa.2020278 |
[7] |
Keonhee Lee, Kazuhiro Sakai. Various shadowing properties and their equivalence. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 533-540. doi: 10.3934/dcds.2005.13.533 |
[8] |
Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Advances in Mathematics of Communications, 2010, 4 (1) : 69-81. doi: 10.3934/amc.2010.4.69 |
[9] |
Brett M. Werner. An example of Kakutani equivalent and strong orbit equivalent substitution systems that are not conjugate. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 239-249. doi: 10.3934/dcdss.2009.2.239 |
[10] |
Michael C. Sullivan. Invariants of twist-wise flow equivalence. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 475-484. doi: 10.3934/dcds.1998.4.475 |
[11] |
Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Addendum. Advances in Mathematics of Communications, 2011, 5 (3) : 543-546. doi: 10.3934/amc.2011.5.543 |
[12] |
Nguyen Lam. Equivalence of sharp Trudinger-Moser-Adams Inequalities. Communications on Pure and Applied Analysis, 2017, 16 (3) : 973-998. doi: 10.3934/cpaa.2017047 |
[13] |
Zemer Kosloff, Terry Soo. The orbital equivalence of Bernoulli actions and their Sinai factors. Journal of Modern Dynamics, 2021, 17: 145-182. doi: 10.3934/jmd.2021005 |
[14] |
Mike Crampin, David Saunders. Homogeneity and projective equivalence of differential equation fields. Journal of Geometric Mechanics, 2012, 4 (1) : 27-47. doi: 10.3934/jgm.2012.4.27 |
[15] |
Michael C. Sullivan. Invariants of twist-wise flow equivalence. Electronic Research Announcements, 1997, 3: 126-130. |
[16] |
Kurt Ehlers. Geometric equivalence on nonholonomic three-manifolds. Conference Publications, 2003, 2003 (Special) : 246-255. doi: 10.3934/proc.2003.2003.246 |
[17] |
B. Kaymakcalan, R. Mert, A. Zafer. Asymptotic equivalence of dynamic systems on time scales. Conference Publications, 2007, 2007 (Special) : 558-567. doi: 10.3934/proc.2007.2007.558 |
[18] |
Liqun Qi, Chen Ling, Jinjie Liu, Chen Ouyang. An orthogonal equivalence theorem for third order tensors. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021154 |
[19] |
Ricardo Miranda Martins. Formal equivalence between normal forms of reversible and hamiltonian dynamical systems. Communications on Pure and Applied Analysis, 2014, 13 (2) : 703-713. doi: 10.3934/cpaa.2014.13.703 |
[20] |
J. Gwinner. On differential variational inequalities and projected dynamical systems - equivalence and a stability result. Conference Publications, 2007, 2007 (Special) : 467-476. doi: 10.3934/proc.2007.2007.467 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]