
Previous Article
An example of Kakutani equivalent and strong orbit equivalent substitution systems that are not conjugate
 DCDSS Home
 This Issue

Next Article
Preface
Measured topological orbit and Kakutani equivalence
1.  Department of Mathematics, University of Toronto, Toronto, Ontario, Canada 
2.  Department of Mathematics, Colorado State University, Fort Collins, CO 80523, United States 
3.  Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904 
[1] 
Mrinal Kanti Roychowdhury, Daniel J. Rudolph. Nearly continuous Kakutani equivalence of adding machines. Journal of Modern Dynamics, 2009, 3 (1) : 103119. doi: 10.3934/jmd.2009.3.103 
[2] 
Luis Barreira, Liviu Horia Popescu, Claudia Valls. Generalized exponential behavior and topological equivalence. Discrete & Continuous Dynamical Systems  B, 2017, 22 (8) : 30233042. doi: 10.3934/dcdsb.2017161 
[3] 
Giuseppe Buttazzo, Luigi De Pascale, Ilaria Fragalà. Topological equivalence of some variational problems involving distances. Discrete & Continuous Dynamical Systems  A, 2001, 7 (2) : 247258. doi: 10.3934/dcds.2001.7.247 
[4] 
Keonhee Lee, Kazuhiro Sakai. Various shadowing properties and their equivalence. Discrete & Continuous Dynamical Systems  A, 2005, 13 (2) : 533540. doi: 10.3934/dcds.2005.13.533 
[5] 
Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Advances in Mathematics of Communications, 2010, 4 (1) : 6981. doi: 10.3934/amc.2010.4.69 
[6] 
Michael C. Sullivan. Invariants of twistwise flow equivalence. Discrete & Continuous Dynamical Systems  A, 1998, 4 (3) : 475484. doi: 10.3934/dcds.1998.4.475 
[7] 
Nguyen Lam. Equivalence of sharp TrudingerMoserAdams Inequalities. Communications on Pure & Applied Analysis, 2017, 16 (3) : 973998. doi: 10.3934/cpaa.2017047 
[8] 
Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Addendum. Advances in Mathematics of Communications, 2011, 5 (3) : 543546. doi: 10.3934/amc.2011.5.543 
[9] 
Mike Crampin, David Saunders. Homogeneity and projective equivalence of differential equation fields. Journal of Geometric Mechanics, 2012, 4 (1) : 2747. doi: 10.3934/jgm.2012.4.27 
[10] 
Michael C. Sullivan. Invariants of twistwise flow equivalence. Electronic Research Announcements, 1997, 3: 126130. 
[11] 
Kurt Ehlers. Geometric equivalence on nonholonomic threemanifolds. Conference Publications, 2003, 2003 (Special) : 246255. doi: 10.3934/proc.2003.2003.246 
[12] 
B. Kaymakcalan, R. Mert, A. Zafer. Asymptotic equivalence of dynamic systems on time scales. Conference Publications, 2007, 2007 (Special) : 558567. doi: 10.3934/proc.2007.2007.558 
[13] 
Brett M. Werner. An example of Kakutani equivalent and strong orbit equivalent substitution systems that are not conjugate. Discrete & Continuous Dynamical Systems  S, 2009, 2 (2) : 239249. doi: 10.3934/dcdss.2009.2.239 
[14] 
Ricardo Miranda Martins. Formal equivalence between normal forms of reversible and hamiltonian dynamical systems. Communications on Pure & Applied Analysis, 2014, 13 (2) : 703713. doi: 10.3934/cpaa.2014.13.703 
[15] 
J. Gwinner. On differential variational inequalities and projected dynamical systems  equivalence and a stability result. Conference Publications, 2007, 2007 (Special) : 467476. doi: 10.3934/proc.2007.2007.467 
[16] 
Stephen McDowall, Plamen Stefanov, Alexandru Tamasan. Gauge equivalence in stationary radiative transport through media with varying index of refraction. Inverse Problems & Imaging, 2010, 4 (1) : 151167. doi: 10.3934/ipi.2010.4.151 
[17] 
Louis Tcheugoue Tebou. Equivalence between observability and stabilization for a class of second order semilinear evolution. Conference Publications, 2009, 2009 (Special) : 744752. doi: 10.3934/proc.2009.2009.744 
[18] 
Katherine Morrison. An enumeration of the equivalence classes of selfdual matrix codes. Advances in Mathematics of Communications, 2015, 9 (4) : 415436. doi: 10.3934/amc.2015.9.415 
[19] 
Chris Good, Sergio Macías. What is topological about topological dynamics?. Discrete & Continuous Dynamical Systems  A, 2018, 38 (3) : 10071031. doi: 10.3934/dcds.2018043 
[20] 
David Grant, Mahesh K. Varanasi. The equivalence of spacetime codes and codes defined over finite fields and Galois rings. Advances in Mathematics of Communications, 2008, 2 (2) : 131145. doi: 10.3934/amc.2008.2.131 
2018 Impact Factor: 0.545
Tools
Metrics
Other articles
by authors
[Back to Top]