June  2009, 2(2): 287-300. doi: 10.3934/dcdss.2009.2.287

Heaviness in symbolic dynamics: Substitution and Sturmian systems

1. 

Department of Mathematics, The Ohio State University, 231 W. 18th Avenue, Columbus, OH 43210, United States

Received  February 2008 Revised  August 2008 Published  April 2009

Heaviness refers to a sequence of partial sums maintaining a certain lower bound and was recently introduced and studied in [11]. After a review of basic properties to familiarize the reader with the ideas of heaviness, general principles of heaviness in symbolic dynamics are introduced. The classical Morse sequence is used to study a specific example of heaviness in a system with nontrivial rational eigenvalues. To contrast, Sturmian sequences are examined, including a new condition for a sequence to be Sturmian.
Citation: David Ralston. Heaviness in symbolic dynamics: Substitution and Sturmian systems. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 287-300. doi: 10.3934/dcdss.2009.2.287
[1]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[2]

Andreu Ferré Moragues. Properties of multicorrelation sequences and large returns under some ergodicity assumptions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020386

[3]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[4]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[5]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]