June  2009, 2(2): 301-314. doi: 10.3934/dcdss.2009.2.301

A note on universality in multidimensional symbolic dynamics


Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544, United States

Received  February 2008 Revised  September 2008 Published  April 2009

We show that in the category of effective $\mathbb{Z}$-dynamical systems there is a universal system, i.e. one that factors onto every other effective system. In particular, for $d\geq3$ there exist $d$-dimensional shifts of finite type which are universal for $1$-dimensional subactions of SFTs. On the other hand, we show that there is no universal effective $\mathbb{Z}^{d}$-system for $d\geq2$, and in particular SFTs cannot be universal for subactions of rank $\geq2$. As a consequence, a decrease in entropy and Medvedev degree and periodic data are not sufficient for a factor map to exists between SFTs.
   We also discuss dynamics of cellular automata on their limit sets and show that (except for the unavoidable presence of a periodic point) they can model a large class of physical systems.
Citation: Michael Hochman. A note on universality in multidimensional symbolic dynamics. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 301-314. doi: 10.3934/dcdss.2009.2.301

Petr Kůrka. On the measure attractor of a cellular automaton. Conference Publications, 2005, 2005 (Special) : 524-535. doi: 10.3934/proc.2005.2005.524


Mike Boyle, Sompong Chuysurichay. The mapping class group of a shift of finite type. Journal of Modern Dynamics, 2018, 13: 115-145. doi: 10.3934/jmd.2018014


Gelasio Salaza, Edgardo Ugalde, Jesús Urías. Master--slave synchronization of affine cellular automaton pairs. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 491-502. doi: 10.3934/dcds.2005.13.491


Akane Kawaharada. Singular function emerging from one-dimensional elementary cellular automaton Rule 150. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2115-2128. doi: 10.3934/dcdsb.2021125


James Kingsbery, Alex Levin, Anatoly Preygel, Cesar E. Silva. Dynamics of the $p$-adic shift and applications. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 209-218. doi: 10.3934/dcds.2011.30.209


Sébastien Guisset. Angular moments models for rarefied gas dynamics. Numerical comparisons with kinetic and Navier-Stokes equations. Kinetic and Related Models, 2020, 13 (4) : 739-758. doi: 10.3934/krm.2020025


Chris Good, Sergio Macías. What is topological about topological dynamics?. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1007-1031. doi: 10.3934/dcds.2018043


Yusra Bibi Ruhomally, Muhammad Zaid Dauhoo, Laurent Dumas. A graph cellular automaton with relation-based neighbourhood describing the impact of peer influence on the consumption of marijuana among college-aged youths. Journal of Dynamics and Games, 2021, 8 (3) : 277-297. doi: 10.3934/jdg.2021011


Marc Chamberland, Victor H. Moll. Dynamics of the degree six Landen transformation. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 905-919. doi: 10.3934/dcds.2006.15.905


Marcelo Sobottka. Right-permutative cellular automata on topological Markov chains. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1095-1109. doi: 10.3934/dcds.2008.20.1095


Le Yin, Ioannis Sgouralis, Vasileios Maroulas. Topological reconstruction of sub-cellular motion with Ensemble Kalman velocimetry. Foundations of Data Science, 2020, 2 (2) : 101-121. doi: 10.3934/fods.2020007


Marc Henrard. Homoclinic and multibump solutions for perturbed second order systems using topological degree. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 765-782. doi: 10.3934/dcds.1999.5.765


Anna Capietto, Walter Dambrosio. A topological degree approach to sublinear systems of second order differential equations. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 861-874. doi: 10.3934/dcds.2000.6.861


Jian Lu, Huaiyu Jian. Topological degree method for the rotationally symmetric $L_p$-Minkowski problem. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 971-980. doi: 10.3934/dcds.2016.36.971


Prof. Dr.rer.nat Widodo. Topological entropy of shift function on the sequences space induced by expanding piecewise linear transformations. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 191-208. doi: 10.3934/dcds.2002.8.191


Bernard Host, Alejandro Maass, Servet Martínez. Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1423-1446. doi: 10.3934/dcds.2003.9.1423


Adnène Arbi, Jinde Cao, Mohssine Es-saiydy, Mohammed Zarhouni, Mohamed Zitane. Dynamics of delayed cellular neural networks in the Stepanov pseudo almost automorphic space. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022136


Purshottam Narain Agrawal, Şule Yüksel Güngör, Abhishek Kumar. Better degree of approximation by modified Bernstein-Durrmeyer type operators. Mathematical Foundations of Computing, 2022, 5 (2) : 75-92. doi: 10.3934/mfc.2021024


Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115


Philipp Gohlke, Dan Rust, Timo Spindeler. Shifts of finite type and random substitutions. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5085-5103. doi: 10.3934/dcds.2019206

2021 Impact Factor: 1.865


  • PDF downloads (81)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]