June  2009, 2(2): 315-324. doi: 10.3934/dcdss.2009.2.315

An application of topological multiple recurrence to tiling

1. 

Department of Mathematics, 1 University Station C1200, University of Texas, Austin, TX 78712, United States

2. 

Mathematical Sciences, University of Memphis, 373 Dunn Hall, Memphis, TN 38152-3240, United States

Received  April 2008 Revised  August 2008 Published  April 2009

We show that given any tiling of Euclidean space, any geometric pattern of points, we can find a patch of tiles (of arbitrarily large size) so that copies of this patch appear in the tiling nearly centered on a scaled and translated version of the pattern. The rather simple proof uses Furstenberg's topological multiple recurrence theorem.
Citation: Rafael De La Llave, A. Windsor. An application of topological multiple recurrence to tiling. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 315-324. doi: 10.3934/dcdss.2009.2.315
[1]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[2]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[3]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]