
Previous Article
Singularly nonautonomous semilinear parabolic problems with critical exponents
 DCDSS Home
 This Issue

Next Article
Preface
Semigroup wellposedness in the energy space of a parabolichyperbolic coupled StokesLamé PDE system of fluidstructure interaction
1.  Department of Mathematics, University of NebraskaLincoln, Lincoln, Nebraska 68588 
2.  Department of Mathematics, University of Virginia, P.O. Box 400137, Charlottesville, VA 22904 
[1] 
George Avalos, Thomas J. Clark. A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3D fluidstructure interaction. Evolution Equations & Control Theory, 2014, 3 (4) : 557578. doi: 10.3934/eect.2014.3.557 
[2] 
Qiang Du, M. D. Gunzburger, L. S. Hou, J. Lee. Analysis of a linear fluidstructure interaction problem. Discrete & Continuous Dynamical Systems  A, 2003, 9 (3) : 633650. doi: 10.3934/dcds.2003.9.633 
[3] 
George Avalos, Daniel Toundykov. A uniform discrete infsup inequality for finite element hydroelastic models. Evolution Equations & Control Theory, 2016, 5 (4) : 515531. doi: 10.3934/eect.2016017 
[4] 
Grégoire Allaire, Alessandro Ferriero. Homogenization and long time asymptotic of a fluidstructure interaction problem. Discrete & Continuous Dynamical Systems  B, 2008, 9 (2) : 199220. doi: 10.3934/dcdsb.2008.9.199 
[5] 
Serge Nicaise, Cristina Pignotti. Asymptotic analysis of a simple model of fluidstructure interaction. Networks & Heterogeneous Media, 2008, 3 (4) : 787813. doi: 10.3934/nhm.2008.3.787 
[6] 
Igor Kukavica, Amjad Tuffaha. Solutions to a fluidstructure interaction free boundary problem. Discrete & Continuous Dynamical Systems  A, 2012, 32 (4) : 13551389. doi: 10.3934/dcds.2012.32.1355 
[7] 
George Avalos, Roberto Triggiani. Fluidstructure interaction with and without internal dissipation of the structure: A contrast study in stability. Evolution Equations & Control Theory, 2013, 2 (4) : 563598. doi: 10.3934/eect.2013.2.563 
[8] 
Oualid Kafi, Nader El Khatib, Jorge Tiago, Adélia Sequeira. Numerical simulations of a 3D fluidstructure interaction model for blood flow in an atherosclerotic artery. Mathematical Biosciences & Engineering, 2017, 14 (1) : 179193. doi: 10.3934/mbe.2017012 
[9] 
Andro Mikelić, Giovanna Guidoboni, Sunčica Čanić. Fluidstructure interaction in a prestressed tube with thick elastic walls I: the stationary Stokes problem. Networks & Heterogeneous Media, 2007, 2 (3) : 397423. doi: 10.3934/nhm.2007.2.397 
[10] 
George Avalos, Roberto Triggiani. Uniform stabilization of a coupled PDE system arising in fluidstructure interaction with boundary dissipation at the interface. Discrete & Continuous Dynamical Systems  A, 2008, 22 (4) : 817833. doi: 10.3934/dcds.2008.22.817 
[11] 
Salim Meddahi, David Mora. Nonconforming mixed finite element approximation of a fluidstructure interaction spectral problem. Discrete & Continuous Dynamical Systems  S, 2016, 9 (1) : 269287. doi: 10.3934/dcdss.2016.9.269 
[12] 
Martina Bukač, Sunčica Čanić. Longitudinal displacement in viscoelastic arteries: A novel fluidstructure interaction computational model, and experimental validation. Mathematical Biosciences & Engineering, 2013, 10 (2) : 295318. doi: 10.3934/mbe.2013.10.295 
[13] 
Mehdi Badra, Takéo Takahashi. Feedback boundary stabilization of 2d fluidstructure interaction systems. Discrete & Continuous Dynamical Systems  A, 2017, 37 (5) : 23152373. doi: 10.3934/dcds.2017102 
[14] 
Henry Jacobs, Joris Vankerschaver. Fluidstructure interaction in the LagrangePoincaré formalism: The NavierStokes and inviscid regimes. Journal of Geometric Mechanics, 2014, 6 (1) : 3966. doi: 10.3934/jgm.2014.6.39 
[15] 
Eugenio Aulisa, Akif Ibragimov, Emine Yasemen KayaCekin. Fluid structure interaction problem with changing thickness beam and slightly compressible fluid. Discrete & Continuous Dynamical Systems  S, 2014, 7 (6) : 11331148. doi: 10.3934/dcdss.2014.7.1133 
[16] 
Daniele Boffi, Lucia Gastaldi. Discrete models for fluidstructure interactions: The finite element Immersed Boundary Method. Discrete & Continuous Dynamical Systems  S, 2016, 9 (1) : 89107. doi: 10.3934/dcdss.2016.9.89 
[17] 
Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with nonlinear beam. Conference Publications, 2009, 2009 (Special) : 424432. doi: 10.3934/proc.2009.2009.424 
[18] 
Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. FLUID STRUCTURE INTERACTION PROBLEM WITH CHANGING THICKNESS NONLINEAR BEAM Fluid structure interaction problem with changing thickness nonlinear beam. Conference Publications, 2011, 2011 (Special) : 813823. doi: 10.3934/proc.2011.2011.813 
[19] 
Philipp Fuchs, Ansgar Jüngel, Max von Renesse. On the Lagrangian structure of quantum fluid models. Discrete & Continuous Dynamical Systems  A, 2014, 34 (4) : 13751396. doi: 10.3934/dcds.2014.34.1375 
[20] 
Manfred Deistler. Singular arma systems: A structure theory. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 383391. doi: 10.3934/naco.2019025 
2018 Impact Factor: 0.545
Tools
Metrics
Other articles
by authors
[Back to Top]