September  2009, 2(3): 609-629. doi: 10.3934/dcdss.2009.2.609

Higher order energy decay rates for damped wave equations with variable coefficients


Department of Mathematics, University of Nebraska-Lincoln, Avery Hall 239, Lincoln, NE 68588, United States


Department of Mathematics, University of Tennessee, Knoxville, TN 37096-1300


Department of Mathematics, University of Tennessee-Knoxville, TN 37996, United States

Received  October 2008 Revised  February 2009 Published  June 2009

Under appropriate assumptions the energy of wave equations with damping and variable coefficients $c(x)$$u_{t t}$-div$(b(x)\nabla u)+a(x)u_t =h(x,t)$ has been shown to decay. Determining the decay rate for the higher order energies of the $k$th order spatial and time derivatives has been an open problem with the exception of some sparse results obtained for $k=1,2$. We establish the sharp gain in the decay rate for all higher order energies in terms of the first energy, and also obtain the sharp gain of decay rates for the $L^2$ norms of the higher order spatial derivatives. The results concern weighted (in time) and also pointwise (in time) energy decay estimates. We also obtain $L^\infty$ estimates for the solution $u$ in dimension $n=3$. As an application we compute explicit decay rates for all energies which involve the dimension $n$ and the bounds for the coefficients $a(x)$ and $b(x)$ in the case $c (x)=1$ and $h(x,t)=0.$
Citation: Petronela Radu, Grozdena Todorova, Borislav Yordanov. Higher order energy decay rates for damped wave equations with variable coefficients. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 609-629. doi: 10.3934/dcdss.2009.2.609

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064


Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations & Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37


Ryo Ikehata, Shingo Kitazaki. Optimal energy decay rates for some wave equations with double damping terms. Evolution Equations & Control Theory, 2019, 8 (4) : 825-846. doi: 10.3934/eect.2019040


Qigui Yang, Qiaomin Xiang. Chaotic oscillations of linear hyperbolic PDE with variable coefficients and implicit boundary conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020335


Shikuan Mao, Yongqin Liu. Decay property for solutions to plate type equations with variable coefficients. Kinetic & Related Models, 2017, 10 (3) : 785-797. doi: 10.3934/krm.2017031


Moez Daoulatli, Irena Lasiecka, Daniel Toundykov. Uniform energy decay for a wave equation with partially supported nonlinear boundary dissipation without growth restrictions. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 67-94. doi: 10.3934/dcdss.2009.2.67


Moez Daoulatli. Rates of decay for the wave systems with time dependent damping. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 407-443. doi: 10.3934/dcds.2011.31.407


Hiroshi Takeda. Global existence of solutions for higher order nonlinear damped wave equations. Conference Publications, 2011, 2011 (Special) : 1358-1367. doi: 10.3934/proc.2011.2011.1358


Montgomery Taylor. The diffusion phenomenon for damped wave equations with space-time dependent coefficients. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5921-5941. doi: 10.3934/dcds.2018257


Claudianor O. Alves, M. M. Cavalcanti, Valeria N. Domingos Cavalcanti, Mohammad A. Rammaha, Daniel Toundykov. On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 583-608. doi: 10.3934/dcdss.2009.2.583


Larissa V. Fardigola. Transformation operators in controllability problems for the wave equations with variable coefficients on a half-axis controlled by the Dirichlet boundary condition. Mathematical Control & Related Fields, 2015, 5 (1) : 31-53. doi: 10.3934/mcrf.2015.5.31


Jun-Ren Luo, Ti-Jun Xiao. Decay rates for second order evolution equations in Hilbert spaces with nonlinear time-dependent damping. Evolution Equations & Control Theory, 2020, 9 (2) : 359-373. doi: 10.3934/eect.2020009


Zdeněk Skalák. On the asymptotic decay of higher-order norms of the solutions to the Navier-Stokes equations in R3. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 361-370. doi: 10.3934/dcdss.2010.3.361


Ruy Coimbra Charão, Jáuber Cavalcante Oliveira, Gustavo Alberto Perla Menzala. Energy decay rates of magnetoelastic waves in a bounded conductive medium. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 797-821. doi: 10.3934/dcds.2009.25.797


Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations & Control Theory, 2018, 7 (3) : 335-351. doi: 10.3934/eect.2018017


Louis Tebou. Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms. Mathematical Control & Related Fields, 2012, 2 (1) : 45-60. doi: 10.3934/mcrf.2012.2.45


Jibin Li, Weigou Rui, Yao Long, Bin He. Travelling wave solutions for higher-order wave equations of KDV type (III). Mathematical Biosciences & Engineering, 2006, 3 (1) : 125-135. doi: 10.3934/mbe.2006.3.125


Mohammed Aassila. On energy decay rate for linear damped systems. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 851-864. doi: 10.3934/dcds.2002.8.851


Henri Schurz. Dissipation of mean energy of discretized linear oscillators under random perturbations. Conference Publications, 2005, 2005 (Special) : 778-783. doi: 10.3934/proc.2005.2005.778


Wenming Hu, Huicheng Yin. Well-posedness of low regularity solutions to the second order strictly hyperbolic equations with non-Lipschitzian coefficients. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1891-1919. doi: 10.3934/cpaa.2019088

2019 Impact Factor: 1.233


  • PDF downloads (40)
  • HTML views (0)
  • Cited by (11)

[Back to Top]