September  2009, 2(3): 679-696. doi: 10.3934/dcdss.2009.2.679

The semilinear Klein-Gordon equation in de Sitter spacetime

1. 

Department of Mathematics, University of Texas-Pan American, 1201 W. University Drive, Edinburg, TX 78541-2999

Received  October 2008 Revised  March 2009 Published  June 2009

In this article we study the blow-up phenomena for the solutions of the semilinear Klein-Gordon equation $\square_g$ $\phi-m^2 \phi = -|\phi |^p $ with the small mass $m \le n/2$ in de Sitter spacetime with the metric $g$. We prove that for every $p>1$ large energy solutions blow up, while for the small energy solutions we give a borderline $p=p(m,n)$ for the global in time existence. The consideration is based on the representation formulas for the solution of the Cauchy problem and on some generalizations of Kato's lemma.
Citation: Karen Yagdjian. The semilinear Klein-Gordon equation in de Sitter spacetime. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 679-696. doi: 10.3934/dcdss.2009.2.679
[1]

Makoto Nakamura. Remarks on a dispersive equation in de Sitter spacetime. Conference Publications, 2015, 2015 (special) : 901-905. doi: 10.3934/proc.2015.0901

[2]

Hayato Miyazaki. Strong blow-up instability for standing wave solutions to the system of the quadratic nonlinear Klein-Gordon equations. Discrete & Continuous Dynamical Systems, 2021, 41 (5) : 2411-2445. doi: 10.3934/dcds.2020370

[3]

Makram Hamouda, Mohamed Ali Hamza, Alessandro Palmieri. A note on the nonexistence of global solutions to the semilinear wave equation with nonlinearity of derivative-type in the generalized Einstein-de Sitter spacetime. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021127

[4]

Hironobu Sasaki. Remark on the scattering problem for the Klein-Gordon equation with power nonlinearity. Conference Publications, 2007, 2007 (Special) : 903-911. doi: 10.3934/proc.2007.2007.903

[5]

Satoshi Masaki, Jun-ichi Segata. Modified scattering for the Klein-Gordon equation with the critical nonlinearity in three dimensions. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1595-1611. doi: 10.3934/cpaa.2018076

[6]

Aslihan Demirkaya, Panayotis G. Kevrekidis, Milena Stanislavova, Atanas Stefanov. Spectral stability analysis for standing waves of a perturbed Klein-Gordon equation. Conference Publications, 2015, 2015 (special) : 359-368. doi: 10.3934/proc.2015.0359

[7]

Stefano Pasquali. A Nekhoroshev type theorem for the nonlinear Klein-Gordon equation with potential. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3573-3594. doi: 10.3934/dcdsb.2017215

[8]

Elena Kopylova. On dispersion decay for 3D Klein-Gordon equation. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5765-5780. doi: 10.3934/dcds.2018251

[9]

Chi-Kun Lin, Kung-Chien Wu. On the fluid dynamical approximation to the nonlinear Klein-Gordon equation. Discrete & Continuous Dynamical Systems, 2012, 32 (6) : 2233-2251. doi: 10.3934/dcds.2012.32.2233

[10]

Hironobu Sasaki. Small data scattering for the Klein-Gordon equation with cubic convolution nonlinearity. Discrete & Continuous Dynamical Systems, 2006, 15 (3) : 973-981. doi: 10.3934/dcds.2006.15.973

[11]

Jun Yang. Vortex structures for Klein-Gordon equation with Ginzburg-Landau nonlinearity. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 2359-2388. doi: 10.3934/dcds.2014.34.2359

[12]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[13]

Changxing Miao, Jiqiang Zheng. Scattering theory for energy-supercritical Klein-Gordon equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2073-2094. doi: 10.3934/dcdss.2016085

[14]

Jungkwon Kim, Hyeongjin Lee, Ihyeok Seo, Jihyeon Seok. On Morawetz estimates with time-dependent weights for the Klein-Gordon equation. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6275-6288. doi: 10.3934/dcds.2020279

[15]

Qinghua Luo. Damped Klein-Gordon equation with variable diffusion coefficient. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021139

[16]

Marcelo M. Cavalcanti, Leonel G. Delatorre, Daiane C. Soares, Victor Hugo Gonzalez Martinez, Janaina P. Zanchetta. Uniform stabilization of the Klein-Gordon system. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5131-5156. doi: 10.3934/cpaa.2020230

[17]

Pierre Garnier. Damping to prevent the blow-up of the korteweg-de vries equation. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1455-1470. doi: 10.3934/cpaa.2017069

[18]

Katharina Schratz, Xiaofei Zhao. On comparison of asymptotic expansion techniques for nonlinear Klein-Gordon equation in the nonrelativistic limit regime. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 2841-2865. doi: 10.3934/dcdsb.2020043

[19]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, 2021, 20 (2) : 737-754. doi: 10.3934/cpaa.2020287

[20]

Hyeongjin Lee, Ihyeok Seo, Jihyeon Seok. Local smoothing and Strichartz estimates for the Klein-Gordon equation with the inverse-square potential. Discrete & Continuous Dynamical Systems, 2020, 40 (1) : 597-608. doi: 10.3934/dcds.2020024

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (109)
  • HTML views (0)
  • Cited by (19)

Other articles
by authors

[Back to Top]