December  2009, 2(4): 829-850. doi: 10.3934/dcdss.2009.2.829

Homoclinic clusters and chaos associated with a folded node in a stellate cell model

1. 

Department of Mathematics and Statistics, University of Sydney, Sydney, Australia

Received  September 2008 Revised  May 2009 Published  September 2009

Acker et al (J. Comp. Neurosci., 15, pp.71-90, 2003) developed a model of stellate cells which reproduces qualitative oscillatory patterns known as mixed mode oscillations observed in experiments. This model includes different time scales and can therefore be viewed as a singularly perturbed system of differential equations. The bifurcation structure of this model is very rich, and includes a novel class of homoclinic bifurcation points. The key to the bifurcation analysis is a folded node singularity that allows trajectories known as canards to cross from a stable slow manifold to an unstable slow manifold as well as a node equilibrium of the slow flow on the unstable slow manifold. In this work we focus on the novel homoclinic orbits within the bifurcation diagram and show that the return of canards from the unstable slow manifold to the funnel of the folded node on the stable slow manifold results in a horseshoe map, and therefore gives rise to chaotic invariant sets. We also use a one-dimensional map to explain why many homoclinic orbits occur in "clusters'' at exponentially close parameter values.
Citation: Martin Wechselberger, Warren Weckesser. Homoclinic clusters and chaos associated with a folded node in a stellate cell model. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 829-850. doi: 10.3934/dcdss.2009.2.829
[1]

Jonathan E. Rubin, Justyna Signerska-Rynkowska, Jonathan D. Touboul, Alexandre Vidal. Wild oscillations in a nonlinear neuron model with resets: (Ⅱ) Mixed-mode oscillations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 4003-4039. doi: 10.3934/dcdsb.2017205

[2]

Bo Lu, Shenquan Liu, Xiaofang Jiang, Jing Wang, Xiaohui Wang. The mixed-mode oscillations in Av-Ron-Parnas-Segel model. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 487-504. doi: 10.3934/dcdss.2017024

[3]

Theodore Vo, Richard Bertram, Martin Wechselberger. Bifurcations of canard-induced mixed mode oscillations in a pituitary Lactotroph model. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2879-2912. doi: 10.3934/dcds.2012.32.2879

[4]

Mathieu Desroches, Bernd Krauskopf, Hinke M. Osinga. The geometry of mixed-mode oscillations in the Olsen model for the Peroxidase-Oxidase reaction. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 807-827. doi: 10.3934/dcdss.2009.2.807

[5]

Shyan-Shiou Chen, Chang-Yuan Cheng. Delay-induced mixed-mode oscillations in a 2D Hindmarsh-Rose-type model. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 37-53. doi: 10.3934/dcdsb.2016.21.37

[6]

Tomáš Roubíček, V. Mantič, C. G. Panagiotopoulos. A quasistatic mixed-mode delamination model. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 591-610. doi: 10.3934/dcdss.2013.6.591

[7]

José Mujica, Bernd Krauskopf, Hinke M. Osinga. A Lin's method approach for detecting all canard orbits arising from a folded node. Journal of Computational Dynamics, 2017, 4 (1&2) : 143-165. doi: 10.3934/jcd.2017005

[8]

W.-J. Beyn, Y.-K Zou. Discretizations of dynamical systems with a saddle-node homoclinic orbit. Discrete and Continuous Dynamical Systems, 1996, 2 (3) : 351-365. doi: 10.3934/dcds.1996.2.351

[9]

Rui Dilão, András Volford. Excitability in a model with a saddle-node homoclinic bifurcation. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 419-434. doi: 10.3934/dcdsb.2004.4.419

[10]

Qingqing Li, Tianshou Zhou. Interlocked multi-node positive and negative feedback loops facilitate oscillations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3139-3155. doi: 10.3934/dcdsb.2018304

[11]

Flaviano Battelli. Saddle-node bifurcation of homoclinic orbits in singular systems. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 203-218. doi: 10.3934/dcds.2001.7.203

[12]

Xiao-Biao Lin, Changrong Zhu. Saddle-node bifurcations of multiple homoclinic solutions in ODES. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1435-1460. doi: 10.3934/dcdsb.2017069

[13]

Ting Yang. Homoclinic orbits and chaos in the generalized Lorenz system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1097-1108. doi: 10.3934/dcdsb.2019210

[14]

Oksana Koltsova, Lev Lerman. Hamiltonian dynamics near nontransverse homoclinic orbit to saddle-focus equilibrium. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 883-913. doi: 10.3934/dcds.2009.25.883

[15]

Benoît Grébert, Tiphaine Jézéquel, Laurent Thomann. Dynamics of Klein-Gordon on a compact surface near a homoclinic orbit. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3485-3510. doi: 10.3934/dcds.2014.34.3485

[16]

Shigui Ruan, Junjie Wei, Jianhong Wu. Bifurcation from a homoclinic orbit in partial functional differential equations. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1293-1322. doi: 10.3934/dcds.2003.9.1293

[17]

Dominic Wynter. Quantitative propagation of chaos for the mixed-sign viscous vortex model on the torus. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022030

[18]

Jonathan E. Rubin, Justyna Signerska-Rynkowska, Jonathan D. Touboul, Alexandre Vidal. Wild oscillations in a nonlinear neuron model with resets: (Ⅰ) Bursting, spike-adding and chaos. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3967-4002. doi: 10.3934/dcdsb.2017204

[19]

Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, 2021, 29 (5) : 2987-3015. doi: 10.3934/era.2021023

[20]

Peng Chen, Linfeng Mei, Xianhua Tang. Nonstationary homoclinic orbit for an infinite-dimensional fractional reaction-diffusion system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (10) : 5389-5409. doi: 10.3934/dcdsb.2021279

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (159)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]