• Previous Article
    On the very weak solution for the Oseen and Navier-Stokes equations
  • DCDS-S Home
  • This Issue
  • Next Article
    An elementary approach to the 3D Navier-Stokes equations with Navier boundary conditions: Existence and uniqueness of various classes of solutions in the flat boundary case.
June  2010, 3(2): 185-197. doi: 10.3934/dcdss.2010.3.185

Loss of smoothness and energy conserving rough weak solutions for the $3d$ Euler equations

1. 

Laboratoire Jacques Louis Lions, Université Pierre et Marie Curie, 175 Avenue du Chevaleret, Paris 75013

2. 

Department of Mathematics and Department of Mechanics and Aerospace Engineering, University of California, Irvine, CA 92697, United States

Received  February 2009 Revised  July 2009 Published  April 2010

A basic example of shear flow was introduced by DiPerna and Majda to study the weak limit of oscillatory solutions of the Euler equations of incompressible ideal fluids. In particular, they proved by means of this example that weak limit of solutions of Euler equations may, in some cases, fail to be a solution of Euler equations. We use this shear flow example to provide non-generic, yet nontrivial, examples concerning the loss of smoothness of solutions of the three-dimensional Euler equations, for initial data that do not belong to $C^{1,\alpha}$. Moreover, we show by means of this shear flow example the existence of weak solutions for the three-dimensional Euler equations with vorticity that is having a nontrivial density concentrated on non-smooth surface. This is very different from what has been proven for the two-dimensional Kelvin-Helmholtz problem where a minimal regularity implies the real analyticity of the interface. Eventually, we use this shear flow to provide explicit examples of non-regular solutions of the three-dimensional Euler equations that conserve the energy, an issue which is related to the Onsager conjecture.
Citation: Claude Bardos, E. S. Titi. Loss of smoothness and energy conserving rough weak solutions for the $3d$ Euler equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 185-197. doi: 10.3934/dcdss.2010.3.185
[1]

Igor Kukavica, Vlad C. Vicol. The domain of analyticity of solutions to the three-dimensional Euler equations in a half space. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 285-303. doi: 10.3934/dcds.2011.29.285

[2]

Christophe Cheverry, Mekki Houbad. A class of large amplitude oscillating solutions for three dimensional Euler equations. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1661-1697. doi: 10.3934/cpaa.2012.11.1661

[3]

Gui-Qiang G. Chen, Hairong Yuan. Local uniqueness of steady spherical transonic shock-fronts for the three--dimensional full Euler equations. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2515-2542. doi: 10.3934/cpaa.2013.12.2515

[4]

Xingwen Hao, Yachun Li, Zejun Wang. Non-relativistic global limits to the three dimensional relativistic euler equations with spherical symmetry. Communications on Pure & Applied Analysis, 2010, 9 (2) : 365-386. doi: 10.3934/cpaa.2010.9.365

[5]

Jian Su, Yinnian He. The almost unconditional convergence of the Euler implicit/explicit scheme for the three dimensional nonstationary Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3421-3438. doi: 10.3934/dcdsb.2017173

[6]

Aibin Zang. Kato's type theorems for the convergence of Euler-Voigt equations to Euler equations with Drichlet boundary conditions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 4945-4953. doi: 10.3934/dcds.2019202

[7]

Yeping Li, Jie Liao. Stability and $ L^{p}$ convergence rates of planar diffusion waves for three-dimensional bipolar Euler-Poisson systems. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1281-1302. doi: 10.3934/cpaa.2019062

[8]

Xue-Li Song, Yan-Ren Hou. Attractors for the three-dimensional incompressible Navier-Stokes equations with damping. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 239-252. doi: 10.3934/dcds.2011.31.239

[9]

Zeqi Zhu, Caidi Zhao. Pullback attractor and invariant measures for the three-dimensional regularized MHD equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1461-1477. doi: 10.3934/dcds.2018060

[10]

Madalina Petcu, Roger Temam, Djoko Wirosoetisno. Averaging method applied to the three-dimensional primitive equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5681-5707. doi: 10.3934/dcds.2016049

[11]

Tong Zhang, Yuxi Zheng. Exact spiral solutions of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 117-133. doi: 10.3934/dcds.1997.3.117

[12]

Ju Ge, Wancheng Sheng. The two dimensional gas expansion problem of the Euler equations for the generalized Chaplygin gas. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2733-2748. doi: 10.3934/cpaa.2014.13.2733

[13]

Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605

[14]

Roman Shvydkoy. Lectures on the Onsager conjecture. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 473-496. doi: 10.3934/dcdss.2010.3.473

[15]

Okihiro Sawada. Analytic rates of solutions to the Euler equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1409-1415. doi: 10.3934/dcdss.2013.6.1409

[16]

Luigi Ambrosio. Variational models for incompressible Euler equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 1-10. doi: 10.3934/dcdsb.2009.11.1

[17]

Adriano Regis Rodrigues, César Castilho, Jair Koiller. Vortex pairs on a triaxial ellipsoid and Kimura's conjecture. Journal of Geometric Mechanics, 2018, 10 (2) : 189-208. doi: 10.3934/jgm.2018007

[18]

Louis Tebou. Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms. Mathematical Control & Related Fields, 2012, 2 (1) : 45-60. doi: 10.3934/mcrf.2012.2.45

[19]

Jianwei Yang, Ruxu Lian, Shu Wang. Incompressible type euler as scaling limit of compressible Euler-Maxwell equations. Communications on Pure & Applied Analysis, 2013, 12 (1) : 503-518. doi: 10.3934/cpaa.2013.12.503

[20]

Yongcai Geng. Singularity formation for relativistic Euler and Euler-Poisson equations with repulsive force. Communications on Pure & Applied Analysis, 2015, 14 (2) : 549-564. doi: 10.3934/cpaa.2015.14.549

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (16)

Other articles
by authors

[Back to Top]