June  2010, 3(2): 311-324. doi: 10.3934/dcdss.2010.3.311

On the local strong solutions for the FENE dumbbell model

1. 

Mathematical Institute of Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic, Czech Republic

Received  March 2009 Revised  June 2009 Published  April 2010

We consider a model for the polymeric fluid which has recently been studied in [12]. We show the local-in-time existence of a strong solution to the corresponding system of partial differential equations under less regularity assumptions on the initial data than in the mentioned paper. The main difference in our approach is the use of the $L^p$ theory for the Stokes system.
Citation: Ondřej Kreml, Milan Pokorný. On the local strong solutions for the FENE dumbbell model. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 311-324. doi: 10.3934/dcdss.2010.3.311
[1]

Kun Wang, Yangping Lin, Yinnian He. Asymptotic analysis of the equations of motion for viscoelastic oldroyd fluid. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 657-677. doi: 10.3934/dcds.2012.32.657

[2]

Evgenii S. Baranovskii. Steady flows of an Oldroyd fluid with threshold slip. Communications on Pure and Applied Analysis, 2019, 18 (2) : 735-750. doi: 10.3934/cpaa.2019036

[3]

Xin Zhong. Global strong solution to the nonhomogeneous micropolar fluid equations with large initial data and vacuum. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021296

[4]

A. Jiménez-Casas, Mario Castro, Justine Yassapan. Finite-dimensional behavior in a thermosyphon with a viscoelastic fluid. Conference Publications, 2013, 2013 (special) : 375-384. doi: 10.3934/proc.2013.2013.375

[5]

Hugo Beirão da Veiga. Turbulence models, $p-$fluid flows, and $W^{2, L}$ regularity of solutions. Communications on Pure and Applied Analysis, 2009, 8 (2) : 769-783. doi: 10.3934/cpaa.2009.8.769

[6]

Matthias Hieber, Miho Murata. The $L^p$-approach to the fluid-rigid body interaction problem for compressible fluids. Evolution Equations and Control Theory, 2015, 4 (1) : 69-87. doi: 10.3934/eect.2015.4.69

[7]

Martina Bukač, Sunčica Čanić. Longitudinal displacement in viscoelastic arteries: A novel fluid-structure interaction computational model, and experimental validation. Mathematical Biosciences & Engineering, 2013, 10 (2) : 295-318. doi: 10.3934/mbe.2013.10.295

[8]

Anis Dhifaoui. $ L^p $-strong solution for the stationary exterior Stokes equations with Navier boundary condition. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1403-1420. doi: 10.3934/dcdss.2022086

[9]

Hiroshi Inoue, Kei Matsuura, Mitsuharu Ôtani. Strong solutions of magneto-micropolar fluid equation. Conference Publications, 2003, 2003 (Special) : 439-448. doi: 10.3934/proc.2003.2003.439

[10]

Shijin Ding, Bingyuan Huang, Xiaoyan Hou. Strong solutions to a fluid-particle interaction model with magnetic field in $ \mathbb{R}^2 $. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 277-300. doi: 10.3934/dcdsb.2021042

[11]

Fabio Cipriani, Gabriele Grillo. On the $l^p$ -agmon's theory. Conference Publications, 1998, 1998 (Special) : 167-176. doi: 10.3934/proc.1998.1998.167

[12]

Yaqing Liu, Liancun Zheng. Second-order slip flow of a generalized Oldroyd-B fluid through porous medium. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2031-2046. doi: 10.3934/dcdss.2016083

[13]

Eduard Feireisl, Šárka Nečasová, Reimund Rautmann, Werner Varnhorn. New developments in mathematical theory of fluid mechanics. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : i-ii. doi: 10.3934/dcdss.2014.7.5i

[14]

Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665

[15]

Victor Zvyagin, Vladimir Orlov. On one problem of viscoelastic fluid dynamics with memory on an infinite time interval. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3855-3877. doi: 10.3934/dcdsb.2018114

[16]

Chunhua Jin. Global classical solution and stability to a coupled chemotaxis-fluid model with logistic source. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3547-3566. doi: 10.3934/dcds.2018150

[17]

Jiapeng Huang, Chunhua Jin. Time periodic solution to a coupled chemotaxis-fluid model with porous medium diffusion. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5415-5439. doi: 10.3934/dcds.2020233

[18]

Fucai Li, Yue Li. Global weak solutions for a kinetic-fluid model with local alignment force in a bounded domain. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3583-3604. doi: 10.3934/cpaa.2021122

[19]

Ciro D'Apice, Rosanna Manzo. A fluid dynamic model for supply chains. Networks and Heterogeneous Media, 2006, 1 (3) : 379-398. doi: 10.3934/nhm.2006.1.379

[20]

Youcef Amirat, Kamel Hamdache. On a heated incompressible magnetic fluid model. Communications on Pure and Applied Analysis, 2012, 11 (2) : 675-696. doi: 10.3934/cpaa.2012.11.675

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (81)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]