September  2010, 3(3): 451-471. doi: 10.3934/dcdss.2010.3.451

New statistical symmetries of the multi-point equations and its importance for turbulent scaling laws

1. 

Chair of Fluid Dynamics, Department of Mechanical Engineering, TU Darmstadt, Petersenstr. 30, 64287 Darmstadt, Germany, Germany

Received  March 2010 Revised  May 2010 Published  May 2010

We presently show that the infinite set of multi-point correlation equations, which are direct statistical consequences of the Navier-Stokes equations, admit a rather large set of Lie symmetry groups. This set is considerable extended compared to the set of groups which are implied from the original set of equations of fluid mechanics. Specifically a new scaling group and translational groups of the correlation vectors and all independent variables have been discovered. These new statistical groups have important consequences on our understanding of turbulent scaling laws to be exemplarily revealed by two examples. Firstly, one of the key foundations of statistical turbulence theory is the universal law of the wall with its essential ingredient is the logarithmic law. We demonstrate that the log-law fundamentally relies on one of the new translational groups. Second, we demonstrate that the recently discovered exponential decay law of isotropic turbulence generated by fractal grids is only admissible with the new statistical scaling symmetry. It may not be borne from the two classical scaling groups implied by the fundamental equations of fluid motion and which has dictated our understanding of turbulence decay since the early thirties implicated by the von-Kármán-Howarth equation.
Citation: Martin Oberlack, Andreas Rosteck. New statistical symmetries of the multi-point equations and its importance for turbulent scaling laws. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 451-471. doi: 10.3934/dcdss.2010.3.451
[1]

Kazeem Olalekan Aremu, Chinedu Izuchukwu, Grace Nnenanya Ogwo, Oluwatosin Temitope Mewomo. Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2161-2180. doi: 10.3934/jimo.2020063

[2]

Yusi Fan, Chenrui Yao, Liangyun Chen. Structure of sympathetic Lie superalgebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021020

[3]

Sohana Jahan. Discriminant analysis of regularized multidimensional scaling. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 255-267. doi: 10.3934/naco.2020024

[4]

Dandan Cheng, Qian Hao, Zhiming Li. Scale pressure for amenable group actions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1091-1102. doi: 10.3934/cpaa.2021008

[5]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[6]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[7]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[8]

Enkhbat Rentsen, N. Tungalag, J. Enkhbayar, O. Battogtokh, L. Enkhtuvshin. Application of survival theory in Mining industry. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 443-448. doi: 10.3934/naco.2020036

[9]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[10]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3241-3271. doi: 10.3934/dcds.2020404

[11]

Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021062

[12]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[13]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[14]

Fioralba Cakoni, Shixu Meng, Jingni Xiao. A note on transmission eigenvalues in electromagnetic scattering theory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021025

[15]

Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021

[16]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021031

[17]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[18]

Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190

[19]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[20]

Joe Gildea, Adrian Korban, Abidin Kaya, Bahattin Yildiz. Constructing self-dual codes from group rings and reverse circulant matrices. Advances in Mathematics of Communications, 2021, 15 (3) : 471-485. doi: 10.3934/amc.2020077

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (133)
  • HTML views (0)
  • Cited by (32)

Other articles
by authors

[Back to Top]