September  2010, 3(3): 451-471. doi: 10.3934/dcdss.2010.3.451

New statistical symmetries of the multi-point equations and its importance for turbulent scaling laws


Chair of Fluid Dynamics, Department of Mechanical Engineering, TU Darmstadt, Petersenstr. 30, 64287 Darmstadt, Germany, Germany

Received  March 2010 Revised  May 2010 Published  May 2010

We presently show that the infinite set of multi-point correlation equations, which are direct statistical consequences of the Navier-Stokes equations, admit a rather large set of Lie symmetry groups. This set is considerable extended compared to the set of groups which are implied from the original set of equations of fluid mechanics. Specifically a new scaling group and translational groups of the correlation vectors and all independent variables have been discovered. These new statistical groups have important consequences on our understanding of turbulent scaling laws to be exemplarily revealed by two examples. Firstly, one of the key foundations of statistical turbulence theory is the universal law of the wall with its essential ingredient is the logarithmic law. We demonstrate that the log-law fundamentally relies on one of the new translational groups. Second, we demonstrate that the recently discovered exponential decay law of isotropic turbulence generated by fractal grids is only admissible with the new statistical scaling symmetry. It may not be borne from the two classical scaling groups implied by the fundamental equations of fluid motion and which has dictated our understanding of turbulence decay since the early thirties implicated by the von-Kármán-Howarth equation.
Citation: Martin Oberlack, Andreas Rosteck. New statistical symmetries of the multi-point equations and its importance for turbulent scaling laws. Discrete and Continuous Dynamical Systems - S, 2010, 3 (3) : 451-471. doi: 10.3934/dcdss.2010.3.451

Chuangqiang Hu, Shudi Yang. Multi-point codes from the GGS curves. Advances in Mathematics of Communications, 2020, 14 (2) : 279-299. doi: 10.3934/amc.2020020


Djédjé Sylvain Zézé, Michel Potier-Ferry, Yannick Tampango. Multi-point Taylor series to solve differential equations. Discrete and Continuous Dynamical Systems - S, 2019, 12 (6) : 1791-1806. doi: 10.3934/dcdss.2019118


John R. Graef, Shapour Heidarkhani, Lingju Kong. Existence of nontrivial solutions to systems of multi-point boundary value problems. Conference Publications, 2013, 2013 (special) : 273-281. doi: 10.3934/proc.2013.2013.273


Lingju Kong, Qingkai Kong. Existence of nodal solutions of multi-point boundary value problems. Conference Publications, 2009, 2009 (Special) : 457-465. doi: 10.3934/proc.2009.2009.457


Yu Tian, John R. Graef, Lingju Kong, Min Wang. Existence of solutions to a multi-point boundary value problem for a second order differential system via the dual least action principle. Conference Publications, 2013, 2013 (special) : 759-769. doi: 10.3934/proc.2013.2013.759


Michele Zadra, Elizabeth L. Mansfield. Using Lie group integrators to solve two and higher dimensional variational problems with symmetry. Journal of Computational Dynamics, 2019, 6 (2) : 485-511. doi: 10.3934/jcd.2019025


Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.


Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014


Nicholas Geneva, Nicholas Zabaras. Multi-fidelity generative deep learning turbulent flows. Foundations of Data Science, 2020, 2 (4) : 391-428. doi: 10.3934/fods.2020019


Andreas Widder, Christian Kuehn. Heterogeneous population dynamics and scaling laws near epidemic outbreaks. Mathematical Biosciences & Engineering, 2016, 13 (5) : 1093-1118. doi: 10.3934/mbe.2016032


Dmitry V. Zenkov. Linear conservation laws of nonholonomic systems with symmetry. Conference Publications, 2003, 2003 (Special) : 967-976. doi: 10.3934/proc.2003.2003.967


Elena Celledoni, Brynjulf Owren. Preserving first integrals with symmetric Lie group methods. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 977-990. doi: 10.3934/dcds.2014.34.977


Emma Hoarau, Claire David, Pierre Sagaut, Thiên-Hiêp Lê. Lie group study of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 495-505. doi: 10.3934/proc.2007.2007.495


L. Bakker. A reducible representation of the generalized symmetry group of a quasiperiodic flow. Conference Publications, 2003, 2003 (Special) : 68-77. doi: 10.3934/proc.2003.2003.68


Eduardo Martínez. Classical field theory on Lie algebroids: Multisymplectic formalism. Journal of Geometric Mechanics, 2018, 10 (1) : 93-138. doi: 10.3934/jgm.2018004


Chaudry Masood Khalique, Muhammad Usman, Maria Luz Gandarais. Nonlinear differential equations: Lie symmetries, conservation laws and other approaches of solving. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : i-ii. doi: 10.3934/dcdss.2020415


María Rosa, María de los Santos Bruzón, María de la Luz Gandarias. Lie symmetries and conservation laws of a Fisher equation with nonlinear convection term. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1331-1339. doi: 10.3934/dcdss.2015.8.1331


Giovanni De Matteis, Gianni Manno. Lie algebra symmetry analysis of the Helfrich and Willmore surface shape equations. Communications on Pure and Applied Analysis, 2014, 13 (1) : 453-481. doi: 10.3934/cpaa.2014.13.453


Yong Hong Wu, B. Wiwatanapataphee. Modelling of turbulent flow and multi-phase heat transfer under electromagnetic force. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 695-706. doi: 10.3934/dcdsb.2007.8.695


Gerald Sommer, Di Zang. Parity symmetry in multi-dimensional signals. Communications on Pure and Applied Analysis, 2007, 6 (3) : 829-852. doi: 10.3934/cpaa.2007.6.829

2021 Impact Factor: 1.865


  • PDF downloads (270)
  • HTML views (0)
  • Cited by (32)

Other articles
by authors

[Back to Top]