December  2010, 3(4): 517-532. doi: 10.3934/dcdss.2010.3.517

A geometric fractional monodromy theorem

1. 

Department of Mathematics, University of Groningen, PO Box 407, 9700 AK, Groningen, Netherlands

2. 

Department of Mathematics, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom

Received  April 2009 Revised  May 2010 Published  August 2010

We prove the existence of fractional monodromy for two degree of freedom integrable Hamiltonian systems with one-parameter families of curled tori under certain general conditions. We describe the action coordinates of such systems near curled tori and we show how to compute fractional monodromy using the notion of the rotation number.
Citation: Henk Broer, Konstantinos Efstathiou, Olga Lukina. A geometric fractional monodromy theorem. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 517-532. doi: 10.3934/dcdss.2010.3.517
References:
[1]

Y. Colin de Verdière and San Vũ Ngoc, Singular Bohr-Sommerfeld rules for 2D integrable systems,, Ann. Sci. Éc. Norm. Sup., 36 (2003), 1.   Google Scholar

[2]

R. H. Cushman and J. J. Duistermaat, Non-Hamiltonian monodromy,, J. Diff. Eqs., 172 (2001), 42.  doi: 10.1006/jdeq.2000.3852.  Google Scholar

[3]

R. H. Cushman, H. Dullin, H. Hanßmann and S. Schmidt, The 1:±2 resonance,, Regular and Chaotic Dynamics, 12 (2007), 642.  doi: 10.1134/S156035470706007X.  Google Scholar

[4]

R. H. Cushman and San Vũ Ngoc, Sign of the monodromy for Liouville integrable systems,, Annales Henri Poincaré, 3 (2002), 883.  doi: 10.1007/s00023-002-8640-7.  Google Scholar

[5]

R. Devaney, "An Introduction to Chaotic Dynamical Systems,'', Benjamin-Cummings, (1986).   Google Scholar

[6]

J. J. Duistermaat, On global action-angle coordinates,, Comm. Pure Appl. Math., 33 (1980), 687.  doi: 10.1002/cpa.3160330602.  Google Scholar

[7]

K. Efstathiou, R. H. Cushman and D. A. Sadovskií, Fractional monodromy in the 1:-2 resonance,, Advances in Mathematics, 209 (2007), 241.  doi: 10.1016/j.aim.2006.05.006.  Google Scholar

[8]

A. Giacobbe, Fractional monodromy: Parallel transport of homology cycles,, Diff. Geom. and Appl., 26 (2008), 140.  doi: 10.1016/j.difgeo.2007.11.011.  Google Scholar

[9]

O. V. Lukina, "Geometry of Torus Bundles in Integrable Hamiltonian Systems,'', Ph.D thesis, (2008).   Google Scholar

[10]

O. V. Lukina, F. Takens and H. W. Broer, Global properties of integrable Hamiltonian systems,, Regular and Chaotic Dynamics, 13 (2008), 602.  doi: 10.1134/S1560354708060105.  Google Scholar

[11]

N. N. Nekhoroshev, Action-angle variables and their generalizations,, Trans. Moscow Math. Soc., 26 (1972), 180.   Google Scholar

[12]

N. N. Nekhoroshev, Fractional monodromy in the case of arbitrary resonances,, Sbornik: Mathematics, 198 (2007), 383.  doi: 10.1070/SM2007v198n03ABEH003841.  Google Scholar

[13]

N. N. Nekhoroshev, Fuzzy fractional monodromy and the section-hyperboloid,, Milan J. Math., 76 (2008), 1.  doi: 10.1007/s00032-008-0085-0.  Google Scholar

[14]

N. N. Nekhoroshev, D. A. Sadovskií and B. I. Zhilinskií, Fractional monodromy of resonant classical and quantum oscillators,, Comptes Rendus Acad. Sci. Paris, 335 (2002), 985.   Google Scholar

[15]

N. N. Nekhoroshev, D. A. Sadovskií and B. I. Zhilinskií, Fractional Hamiltonian monodromy,, Annales Henri Poincaré, 7 (2006), 1099.  doi: 10.1007/s00023-006-0278-4.  Google Scholar

[16]

D. Sugny, P. Mardešić, M. Pelletier, A. Jebrane and H. R. Jauslin, Fractional Hamiltonian monodromy from a Gauss-Manin monodromy,, J. Math. Phys., 49 (2008), 042701.  doi: 10.1063/1.2863614.  Google Scholar

[17]

San Vũ Ngoc, Quantum monodromy in integrable systems,, Communications in Mathematical Physics, 203 (1999), 465.  doi: 10.1007/s002200050621.  Google Scholar

[18]

N. T. Zung, A note on focus-focus singularities,, Diff. Geom. and Appl., 7 (1997), 123.  doi: 10.1016/S0926-2245(96)00042-3.  Google Scholar

[19]

Nguyen Tien Zung, Symplectic topology of integrable Hamiltonian systems, I: Arnold-Liouville with singularities,, Comp. Math., 101 (1996), 179.   Google Scholar

show all references

References:
[1]

Y. Colin de Verdière and San Vũ Ngoc, Singular Bohr-Sommerfeld rules for 2D integrable systems,, Ann. Sci. Éc. Norm. Sup., 36 (2003), 1.   Google Scholar

[2]

R. H. Cushman and J. J. Duistermaat, Non-Hamiltonian monodromy,, J. Diff. Eqs., 172 (2001), 42.  doi: 10.1006/jdeq.2000.3852.  Google Scholar

[3]

R. H. Cushman, H. Dullin, H. Hanßmann and S. Schmidt, The 1:±2 resonance,, Regular and Chaotic Dynamics, 12 (2007), 642.  doi: 10.1134/S156035470706007X.  Google Scholar

[4]

R. H. Cushman and San Vũ Ngoc, Sign of the monodromy for Liouville integrable systems,, Annales Henri Poincaré, 3 (2002), 883.  doi: 10.1007/s00023-002-8640-7.  Google Scholar

[5]

R. Devaney, "An Introduction to Chaotic Dynamical Systems,'', Benjamin-Cummings, (1986).   Google Scholar

[6]

J. J. Duistermaat, On global action-angle coordinates,, Comm. Pure Appl. Math., 33 (1980), 687.  doi: 10.1002/cpa.3160330602.  Google Scholar

[7]

K. Efstathiou, R. H. Cushman and D. A. Sadovskií, Fractional monodromy in the 1:-2 resonance,, Advances in Mathematics, 209 (2007), 241.  doi: 10.1016/j.aim.2006.05.006.  Google Scholar

[8]

A. Giacobbe, Fractional monodromy: Parallel transport of homology cycles,, Diff. Geom. and Appl., 26 (2008), 140.  doi: 10.1016/j.difgeo.2007.11.011.  Google Scholar

[9]

O. V. Lukina, "Geometry of Torus Bundles in Integrable Hamiltonian Systems,'', Ph.D thesis, (2008).   Google Scholar

[10]

O. V. Lukina, F. Takens and H. W. Broer, Global properties of integrable Hamiltonian systems,, Regular and Chaotic Dynamics, 13 (2008), 602.  doi: 10.1134/S1560354708060105.  Google Scholar

[11]

N. N. Nekhoroshev, Action-angle variables and their generalizations,, Trans. Moscow Math. Soc., 26 (1972), 180.   Google Scholar

[12]

N. N. Nekhoroshev, Fractional monodromy in the case of arbitrary resonances,, Sbornik: Mathematics, 198 (2007), 383.  doi: 10.1070/SM2007v198n03ABEH003841.  Google Scholar

[13]

N. N. Nekhoroshev, Fuzzy fractional monodromy and the section-hyperboloid,, Milan J. Math., 76 (2008), 1.  doi: 10.1007/s00032-008-0085-0.  Google Scholar

[14]

N. N. Nekhoroshev, D. A. Sadovskií and B. I. Zhilinskií, Fractional monodromy of resonant classical and quantum oscillators,, Comptes Rendus Acad. Sci. Paris, 335 (2002), 985.   Google Scholar

[15]

N. N. Nekhoroshev, D. A. Sadovskií and B. I. Zhilinskií, Fractional Hamiltonian monodromy,, Annales Henri Poincaré, 7 (2006), 1099.  doi: 10.1007/s00023-006-0278-4.  Google Scholar

[16]

D. Sugny, P. Mardešić, M. Pelletier, A. Jebrane and H. R. Jauslin, Fractional Hamiltonian monodromy from a Gauss-Manin monodromy,, J. Math. Phys., 49 (2008), 042701.  doi: 10.1063/1.2863614.  Google Scholar

[17]

San Vũ Ngoc, Quantum monodromy in integrable systems,, Communications in Mathematical Physics, 203 (1999), 465.  doi: 10.1007/s002200050621.  Google Scholar

[18]

N. T. Zung, A note on focus-focus singularities,, Diff. Geom. and Appl., 7 (1997), 123.  doi: 10.1016/S0926-2245(96)00042-3.  Google Scholar

[19]

Nguyen Tien Zung, Symplectic topology of integrable Hamiltonian systems, I: Arnold-Liouville with singularities,, Comp. Math., 101 (1996), 179.   Google Scholar

[1]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[2]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[3]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[4]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[5]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[6]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[7]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[8]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[9]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[10]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[11]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[12]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[13]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[14]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[15]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[16]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[17]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[18]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[19]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[20]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (5)

[Back to Top]