December  2010, 3(4): 517-532. doi: 10.3934/dcdss.2010.3.517

A geometric fractional monodromy theorem

1. 

Department of Mathematics, University of Groningen, PO Box 407, 9700 AK, Groningen, Netherlands

2. 

Department of Mathematics, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom

Received  April 2009 Revised  May 2010 Published  August 2010

We prove the existence of fractional monodromy for two degree of freedom integrable Hamiltonian systems with one-parameter families of curled tori under certain general conditions. We describe the action coordinates of such systems near curled tori and we show how to compute fractional monodromy using the notion of the rotation number.
Citation: Henk Broer, Konstantinos Efstathiou, Olga Lukina. A geometric fractional monodromy theorem. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 517-532. doi: 10.3934/dcdss.2010.3.517
References:
[1]

Y. Colin de Verdière and San Vũ Ngoc, Singular Bohr-Sommerfeld rules for 2D integrable systems,, Ann. Sci. Éc. Norm. Sup., 36 (2003), 1.   Google Scholar

[2]

R. H. Cushman and J. J. Duistermaat, Non-Hamiltonian monodromy,, J. Diff. Eqs., 172 (2001), 42.  doi: 10.1006/jdeq.2000.3852.  Google Scholar

[3]

R. H. Cushman, H. Dullin, H. Hanßmann and S. Schmidt, The 1:±2 resonance,, Regular and Chaotic Dynamics, 12 (2007), 642.  doi: 10.1134/S156035470706007X.  Google Scholar

[4]

R. H. Cushman and San Vũ Ngoc, Sign of the monodromy for Liouville integrable systems,, Annales Henri Poincaré, 3 (2002), 883.  doi: 10.1007/s00023-002-8640-7.  Google Scholar

[5]

R. Devaney, "An Introduction to Chaotic Dynamical Systems,'', Benjamin-Cummings, (1986).   Google Scholar

[6]

J. J. Duistermaat, On global action-angle coordinates,, Comm. Pure Appl. Math., 33 (1980), 687.  doi: 10.1002/cpa.3160330602.  Google Scholar

[7]

K. Efstathiou, R. H. Cushman and D. A. Sadovskií, Fractional monodromy in the 1:-2 resonance,, Advances in Mathematics, 209 (2007), 241.  doi: 10.1016/j.aim.2006.05.006.  Google Scholar

[8]

A. Giacobbe, Fractional monodromy: Parallel transport of homology cycles,, Diff. Geom. and Appl., 26 (2008), 140.  doi: 10.1016/j.difgeo.2007.11.011.  Google Scholar

[9]

O. V. Lukina, "Geometry of Torus Bundles in Integrable Hamiltonian Systems,'', Ph.D thesis, (2008).   Google Scholar

[10]

O. V. Lukina, F. Takens and H. W. Broer, Global properties of integrable Hamiltonian systems,, Regular and Chaotic Dynamics, 13 (2008), 602.  doi: 10.1134/S1560354708060105.  Google Scholar

[11]

N. N. Nekhoroshev, Action-angle variables and their generalizations,, Trans. Moscow Math. Soc., 26 (1972), 180.   Google Scholar

[12]

N. N. Nekhoroshev, Fractional monodromy in the case of arbitrary resonances,, Sbornik: Mathematics, 198 (2007), 383.  doi: 10.1070/SM2007v198n03ABEH003841.  Google Scholar

[13]

N. N. Nekhoroshev, Fuzzy fractional monodromy and the section-hyperboloid,, Milan J. Math., 76 (2008), 1.  doi: 10.1007/s00032-008-0085-0.  Google Scholar

[14]

N. N. Nekhoroshev, D. A. Sadovskií and B. I. Zhilinskií, Fractional monodromy of resonant classical and quantum oscillators,, Comptes Rendus Acad. Sci. Paris, 335 (2002), 985.   Google Scholar

[15]

N. N. Nekhoroshev, D. A. Sadovskií and B. I. Zhilinskií, Fractional Hamiltonian monodromy,, Annales Henri Poincaré, 7 (2006), 1099.  doi: 10.1007/s00023-006-0278-4.  Google Scholar

[16]

D. Sugny, P. Mardešić, M. Pelletier, A. Jebrane and H. R. Jauslin, Fractional Hamiltonian monodromy from a Gauss-Manin monodromy,, J. Math. Phys., 49 (2008), 042701.  doi: 10.1063/1.2863614.  Google Scholar

[17]

San Vũ Ngoc, Quantum monodromy in integrable systems,, Communications in Mathematical Physics, 203 (1999), 465.  doi: 10.1007/s002200050621.  Google Scholar

[18]

N. T. Zung, A note on focus-focus singularities,, Diff. Geom. and Appl., 7 (1997), 123.  doi: 10.1016/S0926-2245(96)00042-3.  Google Scholar

[19]

Nguyen Tien Zung, Symplectic topology of integrable Hamiltonian systems, I: Arnold-Liouville with singularities,, Comp. Math., 101 (1996), 179.   Google Scholar

show all references

References:
[1]

Y. Colin de Verdière and San Vũ Ngoc, Singular Bohr-Sommerfeld rules for 2D integrable systems,, Ann. Sci. Éc. Norm. Sup., 36 (2003), 1.   Google Scholar

[2]

R. H. Cushman and J. J. Duistermaat, Non-Hamiltonian monodromy,, J. Diff. Eqs., 172 (2001), 42.  doi: 10.1006/jdeq.2000.3852.  Google Scholar

[3]

R. H. Cushman, H. Dullin, H. Hanßmann and S. Schmidt, The 1:±2 resonance,, Regular and Chaotic Dynamics, 12 (2007), 642.  doi: 10.1134/S156035470706007X.  Google Scholar

[4]

R. H. Cushman and San Vũ Ngoc, Sign of the monodromy for Liouville integrable systems,, Annales Henri Poincaré, 3 (2002), 883.  doi: 10.1007/s00023-002-8640-7.  Google Scholar

[5]

R. Devaney, "An Introduction to Chaotic Dynamical Systems,'', Benjamin-Cummings, (1986).   Google Scholar

[6]

J. J. Duistermaat, On global action-angle coordinates,, Comm. Pure Appl. Math., 33 (1980), 687.  doi: 10.1002/cpa.3160330602.  Google Scholar

[7]

K. Efstathiou, R. H. Cushman and D. A. Sadovskií, Fractional monodromy in the 1:-2 resonance,, Advances in Mathematics, 209 (2007), 241.  doi: 10.1016/j.aim.2006.05.006.  Google Scholar

[8]

A. Giacobbe, Fractional monodromy: Parallel transport of homology cycles,, Diff. Geom. and Appl., 26 (2008), 140.  doi: 10.1016/j.difgeo.2007.11.011.  Google Scholar

[9]

O. V. Lukina, "Geometry of Torus Bundles in Integrable Hamiltonian Systems,'', Ph.D thesis, (2008).   Google Scholar

[10]

O. V. Lukina, F. Takens and H. W. Broer, Global properties of integrable Hamiltonian systems,, Regular and Chaotic Dynamics, 13 (2008), 602.  doi: 10.1134/S1560354708060105.  Google Scholar

[11]

N. N. Nekhoroshev, Action-angle variables and their generalizations,, Trans. Moscow Math. Soc., 26 (1972), 180.   Google Scholar

[12]

N. N. Nekhoroshev, Fractional monodromy in the case of arbitrary resonances,, Sbornik: Mathematics, 198 (2007), 383.  doi: 10.1070/SM2007v198n03ABEH003841.  Google Scholar

[13]

N. N. Nekhoroshev, Fuzzy fractional monodromy and the section-hyperboloid,, Milan J. Math., 76 (2008), 1.  doi: 10.1007/s00032-008-0085-0.  Google Scholar

[14]

N. N. Nekhoroshev, D. A. Sadovskií and B. I. Zhilinskií, Fractional monodromy of resonant classical and quantum oscillators,, Comptes Rendus Acad. Sci. Paris, 335 (2002), 985.   Google Scholar

[15]

N. N. Nekhoroshev, D. A. Sadovskií and B. I. Zhilinskií, Fractional Hamiltonian monodromy,, Annales Henri Poincaré, 7 (2006), 1099.  doi: 10.1007/s00023-006-0278-4.  Google Scholar

[16]

D. Sugny, P. Mardešić, M. Pelletier, A. Jebrane and H. R. Jauslin, Fractional Hamiltonian monodromy from a Gauss-Manin monodromy,, J. Math. Phys., 49 (2008), 042701.  doi: 10.1063/1.2863614.  Google Scholar

[17]

San Vũ Ngoc, Quantum monodromy in integrable systems,, Communications in Mathematical Physics, 203 (1999), 465.  doi: 10.1007/s002200050621.  Google Scholar

[18]

N. T. Zung, A note on focus-focus singularities,, Diff. Geom. and Appl., 7 (1997), 123.  doi: 10.1016/S0926-2245(96)00042-3.  Google Scholar

[19]

Nguyen Tien Zung, Symplectic topology of integrable Hamiltonian systems, I: Arnold-Liouville with singularities,, Comp. Math., 101 (1996), 179.   Google Scholar

[1]

Ernest Fontich, Pau Martín. Arnold diffusion in perturbations of analytic integrable Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 61-84. doi: 10.3934/dcds.2001.7.61

[2]

Matteo Petrera, Yuri B. Suris. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor. Journal of Computational Dynamics, 2019, 6 (2) : 401-408. doi: 10.3934/jcd.2019020

[3]

Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479

[4]

Alicia Cordero, José Martínez Alfaro, Pura Vindel. Bott integrable Hamiltonian systems on $S^{2}\times S^{1}$. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 587-604. doi: 10.3934/dcds.2008.22.587

[5]

Fuzhong Cong, Jialin Hong, Hongtian Li. Quasi-effective stability for nearly integrable Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 67-80. doi: 10.3934/dcdsb.2016.21.67

[6]

Marcel Guardia. Splitting of separatrices in the resonances of nearly integrable Hamiltonian systems of one and a half degrees of freedom. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2829-2859. doi: 10.3934/dcds.2013.33.2829

[7]

P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1

[8]

Aristophanes Dimakis, Folkert Müller-Hoissen. Bidifferential graded algebras and integrable systems. Conference Publications, 2009, 2009 (Special) : 208-219. doi: 10.3934/proc.2009.2009.208

[9]

Leo T. Butler. A note on integrable mechanical systems on surfaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1873-1878. doi: 10.3934/dcds.2014.34.1873

[10]

Rongmei Cao, Jiangong You. The existence of integrable invariant manifolds of Hamiltonian partial differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 227-234. doi: 10.3934/dcds.2006.16.227

[11]

Colin Rogers, Tommaso Ruggeri. q-Gaussian integrable Hamiltonian reductions in anisentropic gasdynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2297-2312. doi: 10.3934/dcdsb.2014.19.2297

[12]

Kenneth R. Meyer, Jesús F. Palacián, Patricia Yanguas. Normally stable hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1201-1214. doi: 10.3934/dcds.2013.33.1201

[13]

Antonio Giorgilli. Unstable equilibria of Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 855-871. doi: 10.3934/dcds.2001.7.855

[14]

Sonomi Kakizaki, Akiko Fukuda, Yusaku Yamamoto, Masashi Iwasaki, Emiko Ishiwata, Yoshimasa Nakamura. Conserved quantities of the integrable discrete hungry systems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 889-899. doi: 10.3934/dcdss.2015.8.889

[15]

Răzvan M. Tudoran. On the control of stability of periodic orbits of completely integrable systems. Journal of Geometric Mechanics, 2015, 7 (1) : 109-124. doi: 10.3934/jgm.2015.7.109

[16]

Álvaro Pelayo, San Vű Ngọc. First steps in symplectic and spectral theory of integrable systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3325-3377. doi: 10.3934/dcds.2012.32.3325

[17]

Boris S. Kruglikov and Vladimir S. Matveev. Vanishing of the entropy pseudonorm for certain integrable systems. Electronic Research Announcements, 2006, 12: 19-28.

[18]

Dong Chen. Positive metric entropy in nondegenerate nearly integrable systems. Journal of Modern Dynamics, 2017, 11: 43-56. doi: 10.3934/jmd.2017003

[19]

Helen Christodoulidi, Andrew N. W. Hone, Theodoros E. Kouloukas. A new class of integrable Lotka–Volterra systems. Journal of Computational Dynamics, 2019, 6 (2) : 223-237. doi: 10.3934/jcd.2019011

[20]

Denis de Carvalho Braga, Luis Fernando Mello, Carmen Rocşoreanu, Mihaela Sterpu. Lyapunov coefficients for non-symmetrically coupled identical dynamical systems. Application to coupled advertising models. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 785-803. doi: 10.3934/dcdsb.2009.11.785

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (4)

[Back to Top]