-
Previous Article
Quasi-periodic solutions for complex Ginzburg-Landau equation of nonlinearity $|u|^{2p}u$
- DCDS-S Home
- This Issue
-
Next Article
Some KAM applications to Celestial Mechanics
Properly-degenerate KAM theory (following V. I. Arnold)
1. | Dipartimento di Matematica, Università "Roma Tre", Largo S. L. Murialdo 1, 00146 Roma |
2. | Dipartimento di Matematica ed Applicazioni "R. Caccioppoli”, Università di Napoli "Federico II”, Monte Sant’Angelo – Via Cinthia I-80126 Napoli, Italy |
References:
[1] |
K. Abdullah and A. Albouy, On a strange resonance noticed by M. Herman, Regul. Chaotic Dyn., 6 (2001), 421-432.
doi: 10.1070/RD2001v006n04ABEH000186. |
[2] |
V. I. Arnold, "Mathematical Methods of Classical Mechanics,'' Translated from the Russian by K. Vogtmann and A. Weinstein, Second edition. Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989. |
[3] |
V. I. Arnold, Small denominators and problems of stability of motion in classical and celestial mechanics, (Russian) Uspehi Mat. Nauk, 18 (1963), 91-192; English translation, Russian Math. Surveys, 18 (1963), 85-191. |
[4] |
L. Biasco, L. Chierchia and E. Valdinoci, Elliptic two-dimensional invariant tori for the planetary three-body problem, Arch. Rational Mech. Anal., 170 (2003), 91-135.
doi: 10.1007/s00205-003-0269-2. |
[5] |
A. Celletti and L. Chierchia, KAM stability and celestial mechanics, Mem. Amer. Math. Soc., 187 (2007), viii+134pp. |
[6] |
L. Chierchia and F. Pusateri, Analytic Lagrangian tori for the planetary many-body problem, Ergodic Theory Dynam. Systems, 29 ( 2009), 849-873.
doi: 10.1017/S0143385708000503. |
[7] |
A. Deprit, Elimination of the nodes in problems of $n$ bodies, Celestial Mech., 30 (1983), 181-195.
doi: 10.1007/BF01234305. |
[8] |
L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions,'' Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. |
[9] |
H. Federer, "Geometric Measure Theory,'' Die Grundlehren der mathematischen Wissenschaften, Band 153 Springer-Verlag New York Inc., New York 1969. |
[10] |
J. Féjoz, Démonstration du 'théorème d'Arnold' sur la stabilité du système planétaire (d'après Herman), (French)Ergodic Theory Dynam. Systems, 24 (2004), 1521-1582. Revised version (2007) at http://people.math.jussieu.fr/ fejoz/articles.html. |
[11] |
H. Hofer, E. Zehnder, "Symplectic Invariants and Hamiltonian Dynamics,'' Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel, 1994. |
[12] |
U. Locatelli and A. Giorgilli, Invariant tori in the Sun-Jupiter-Saturn system, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 377-398 (electronic). |
[13] |
G. Pinzari, "On the Kolmogorov Set for Many-Body Problems," PhD thesis, Università degli Studi Roma Tre, April 2009, Available at http://ricerca.mat.uniroma3.it/dottorato/tesi.html. |
[14] |
J. Pöschel, Nekhoroshev estimates for quasi-convex Hamiltonian systems, Math. Z., 213 (1993), 187-216.
doi: 10.1007/BF03025718. |
[15] |
P. Robutel, Stability of the planetary three-body problem. II. KAM theory and existence of quasiperiodic motions, Celestial Mech. Dynam. Astronom., 62 (1995), 219-261.
doi: 10.1007/BF00692089. |
[16] |
H. Rüssmann, Nondegeneracy in the perturbation theory of integrable dynamical systems, Stochastics, algebra and analysis in classical and quantum dynamics (Marseille, 1988), 211-223, Math. Appl., 59, Kluwer Acad. Publ., Dordrecht, 1990. |
[17] |
M. B. Sevryuk, The classical KAM theory at the dawn of the twenty-first century, Dedicated to Vladimir Igorevich Arnold on the occasion of his 65th birthday, Mosc. Math. J., 3 (2003), 1113-1144, 1201-1202. |
[18] |
J. Williamson, On the algebraic problem concerning the normal forms of linear dynamical systems, Amer. J. Math., 58 (1936), 141-163.
doi: 10.2307/2371062. |
show all references
References:
[1] |
K. Abdullah and A. Albouy, On a strange resonance noticed by M. Herman, Regul. Chaotic Dyn., 6 (2001), 421-432.
doi: 10.1070/RD2001v006n04ABEH000186. |
[2] |
V. I. Arnold, "Mathematical Methods of Classical Mechanics,'' Translated from the Russian by K. Vogtmann and A. Weinstein, Second edition. Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989. |
[3] |
V. I. Arnold, Small denominators and problems of stability of motion in classical and celestial mechanics, (Russian) Uspehi Mat. Nauk, 18 (1963), 91-192; English translation, Russian Math. Surveys, 18 (1963), 85-191. |
[4] |
L. Biasco, L. Chierchia and E. Valdinoci, Elliptic two-dimensional invariant tori for the planetary three-body problem, Arch. Rational Mech. Anal., 170 (2003), 91-135.
doi: 10.1007/s00205-003-0269-2. |
[5] |
A. Celletti and L. Chierchia, KAM stability and celestial mechanics, Mem. Amer. Math. Soc., 187 (2007), viii+134pp. |
[6] |
L. Chierchia and F. Pusateri, Analytic Lagrangian tori for the planetary many-body problem, Ergodic Theory Dynam. Systems, 29 ( 2009), 849-873.
doi: 10.1017/S0143385708000503. |
[7] |
A. Deprit, Elimination of the nodes in problems of $n$ bodies, Celestial Mech., 30 (1983), 181-195.
doi: 10.1007/BF01234305. |
[8] |
L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions,'' Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. |
[9] |
H. Federer, "Geometric Measure Theory,'' Die Grundlehren der mathematischen Wissenschaften, Band 153 Springer-Verlag New York Inc., New York 1969. |
[10] |
J. Féjoz, Démonstration du 'théorème d'Arnold' sur la stabilité du système planétaire (d'après Herman), (French)Ergodic Theory Dynam. Systems, 24 (2004), 1521-1582. Revised version (2007) at http://people.math.jussieu.fr/ fejoz/articles.html. |
[11] |
H. Hofer, E. Zehnder, "Symplectic Invariants and Hamiltonian Dynamics,'' Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel, 1994. |
[12] |
U. Locatelli and A. Giorgilli, Invariant tori in the Sun-Jupiter-Saturn system, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 377-398 (electronic). |
[13] |
G. Pinzari, "On the Kolmogorov Set for Many-Body Problems," PhD thesis, Università degli Studi Roma Tre, April 2009, Available at http://ricerca.mat.uniroma3.it/dottorato/tesi.html. |
[14] |
J. Pöschel, Nekhoroshev estimates for quasi-convex Hamiltonian systems, Math. Z., 213 (1993), 187-216.
doi: 10.1007/BF03025718. |
[15] |
P. Robutel, Stability of the planetary three-body problem. II. KAM theory and existence of quasiperiodic motions, Celestial Mech. Dynam. Astronom., 62 (1995), 219-261.
doi: 10.1007/BF00692089. |
[16] |
H. Rüssmann, Nondegeneracy in the perturbation theory of integrable dynamical systems, Stochastics, algebra and analysis in classical and quantum dynamics (Marseille, 1988), 211-223, Math. Appl., 59, Kluwer Acad. Publ., Dordrecht, 1990. |
[17] |
M. B. Sevryuk, The classical KAM theory at the dawn of the twenty-first century, Dedicated to Vladimir Igorevich Arnold on the occasion of his 65th birthday, Mosc. Math. J., 3 (2003), 1113-1144, 1201-1202. |
[18] |
J. Williamson, On the algebraic problem concerning the normal forms of linear dynamical systems, Amer. J. Math., 58 (1936), 141-163.
doi: 10.2307/2371062. |
[1] |
E. Muñoz Garcia, R. Pérez-Marco. Diophantine conditions in small divisors and transcendental number theory. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1401-1409. doi: 10.3934/dcds.2003.9.1401 |
[2] |
Gabriella Pinzari. Global Kolmogorov tori in the planetary $\boldsymbol N$-body problem. Announcement of result. Electronic Research Announcements, 2015, 22: 55-75. doi: 10.3934/era.2015.22.55 |
[3] |
Nils Ackermann, Thomas Bartsch, Petr Kaplický. An invariant set generated by the domain topology for parabolic semiflows with small diffusion. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 613-626. doi: 10.3934/dcds.2007.18.613 |
[4] |
Luca Biasco, Luigi Chierchia. On the measure of KAM tori in two degrees of freedom. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6635-6648. doi: 10.3934/dcds.2020134 |
[5] |
Dongfeng Yan. KAM Tori for generalized Benjamin-Ono equation. Communications on Pure and Applied Analysis, 2015, 14 (3) : 941-957. doi: 10.3934/cpaa.2015.14.941 |
[6] |
Rodica Toader. Scattering in domains with many small obstacles. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 321-338. doi: 10.3934/dcds.1998.4.321 |
[7] |
Lorenzo Arona, Josep J. Masdemont. Computation of heteroclinic orbits between normally hyperbolic invariant 3-spheres foliated by 2-dimensional invariant Tori in Hill's problem. Conference Publications, 2007, 2007 (Special) : 64-74. doi: 10.3934/proc.2007.2007.64 |
[8] |
Guanghua Shi, Dongfeng Yan. KAM tori for quintic nonlinear schrödinger equations with given potential. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2421-2439. doi: 10.3934/dcds.2020120 |
[9] |
Andrea Davini, Maxime Zavidovique. Weak KAM theory for nonregular commuting Hamiltonians. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 57-94. doi: 10.3934/dcdsb.2013.18.57 |
[10] |
Helmut Rüssmann. KAM iteration with nearly infinitely small steps in dynamical systems of polynomial character. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 683-718. doi: 10.3934/dcdss.2010.3.683 |
[11] |
Shengqing Hu, Bin Liu. Degenerate lower dimensional invariant tori in reversible system. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3735-3763. doi: 10.3934/dcds.2018162 |
[12] |
Hsuan-Wen Su. Finding invariant tori with Poincare's map. Communications on Pure and Applied Analysis, 2008, 7 (2) : 433-443. doi: 10.3934/cpaa.2008.7.433 |
[13] |
Ugo Locatelli, Antonio Giorgilli. Invariant tori in the Sun--Jupiter--Saturn system. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 377-398. doi: 10.3934/dcdsb.2007.7.377 |
[14] |
Fuzhong Cong, Yong Li. Invariant hyperbolic tori for Hamiltonian systems with degeneracy. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 371-382. doi: 10.3934/dcds.1997.3.371 |
[15] |
Hans Koch. On the renormalization of Hamiltonian flows, and critical invariant tori. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 633-646. doi: 10.3934/dcds.2002.8.633 |
[16] |
Xiaocai Wang. Non-floquet invariant tori in reversible systems. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3439-3457. doi: 10.3934/dcds.2018147 |
[17] |
Michele V. Bartuccelli, G. Gentile, Kyriakos V. Georgiou. Kam theory, Lindstedt series and the stability of the upside-down pendulum. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 413-426. doi: 10.3934/dcds.2003.9.413 |
[18] |
Diogo Gomes, Levon Nurbekyan. An infinite-dimensional weak KAM theory via random variables. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6167-6185. doi: 10.3934/dcds.2016069 |
[19] |
Xifeng Su, Lin Wang, Jun Yan. Weak KAM theory for HAMILTON-JACOBI equations depending on unknown functions. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6487-6522. doi: 10.3934/dcds.2016080 |
[20] |
Xiaocai Wang, Junxiang Xu, Dongfeng Zhang. A KAM theorem for the elliptic lower dimensional tori with one normal frequency in reversible systems. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2141-2160. doi: 10.3934/dcds.2017092 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]