December  2010, 3(4): 579-600. doi: 10.3934/dcdss.2010.3.579

Quasi-periodic solutions for complex Ginzburg-Landau equation of nonlinearity $|u|^{2p}u$

1. 

School of Mathematical Sciences, Fudan University, Shanghai 200433, China, China, China

Received  March 2009 Revised  June 2010 Published  August 2010

In this paper we prove that there is a Cantorian branch of 2-dimensional KAM invariant tori for the complex Ginzburg-Landau equation with the nonlinearity $|u|^{2p}u,\ p\geq1$.
Citation: Hongzi Cong, Jianjun Liu, Xiaoping Yuan. Quasi-periodic solutions for complex Ginzburg-Landau equation of nonlinearity $|u|^{2p}u$. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 579-600. doi: 10.3934/dcdss.2010.3.579
References:
[1]

K. W. Chung and X. Yuan, Periodic and quasi-periodic solutions for the complex Ginzburg-Landau equation,, Nonlinearity, 21 (2008), 435.  doi: 10.1088/0951-7715/21/3/004.  Google Scholar

[2]

H. Cong, J. Liu and X. Yuan, Quasiperiodic solutions for the cubic complex Ginzburg-Landau equation,, J. Math. Physics, 50 (2009).  doi: 10.1063/1.3157213.  Google Scholar

[3]

C. D. Levermore and M. Oliver, The complex Ginzburg-Landau equation as a model problem,, in, 31 ().   Google Scholar

[4]

Zh. Liang, Quasi-periodic solutions for $1D$ Schrödinger equation with the nonlinearity $|u|^{2p}u$,, J. Differential Equations, 244 (2008), 2185.  doi: 10.1016/j.jde.2008.02.015.  Google Scholar

[5]

B. P. Luce, Homoclinic explosions in the complex Ginzburg-Landau equation,, Physica D, 84 (1995), 553.  doi: 10.1016/0167-2789(95)00047-8.  Google Scholar

[6]

S. C. Mancas and S. R. Choudhury, Bifurcations of plane wave (CW) solutions in the complex cubic-quintic Ginzburg-Landau equation,, Math. Comput. Simul., 74 (2007), 266.  doi: 10.1016/j.matcom.2006.10.009.  Google Scholar

[7]

G. Cruz-Pacheco, C. D. Levermore and B. P. Luce, Complex Ginzburg-Landau equations as perturbations of nonlinear Schrödinger equations: A Melnikov approach,, Physica D, 197 (2004), 269.  doi: 10.1016/j.physd.2004.07.012.  Google Scholar

[8]

J. Pöschel, Quasi-periodic solutions for a nonlinear wave equation,, Comment. Math. Helv., 71 (1996), 269.  doi: 10.1007/BF02566420.  Google Scholar

[9]

P. Takáč, Invariant $2$-tori in the time-dependent Ginzburg-Landau equation,, Nonlinearity, 5 (1992), 289.  doi: 10.1088/0951-7715/5/2/002.  Google Scholar

[10]

C. Valls, Quasiperiodic solutions for dissipative Boussinesq systems,, Comm. Math. Phys., 265 (2006), 305.  doi: 10.1007/s00220-006-0026-0.  Google Scholar

[11]

X. Yuan, Quasi-periodic solutions of nonlinear Schrödinger equations of higher dimension,, J. Differential Equations, 195 (2003), 230.  doi: 10.1016/S0022-0396(03)00095-0.  Google Scholar

[12]

X. Yuan, A KAM theorem with applications to partial differential equations of higher dimensions,, Comm. Math. Phys., 275 (2007), 97.  doi: 10.1007/s00220-007-0287-2.  Google Scholar

show all references

References:
[1]

K. W. Chung and X. Yuan, Periodic and quasi-periodic solutions for the complex Ginzburg-Landau equation,, Nonlinearity, 21 (2008), 435.  doi: 10.1088/0951-7715/21/3/004.  Google Scholar

[2]

H. Cong, J. Liu and X. Yuan, Quasiperiodic solutions for the cubic complex Ginzburg-Landau equation,, J. Math. Physics, 50 (2009).  doi: 10.1063/1.3157213.  Google Scholar

[3]

C. D. Levermore and M. Oliver, The complex Ginzburg-Landau equation as a model problem,, in, 31 ().   Google Scholar

[4]

Zh. Liang, Quasi-periodic solutions for $1D$ Schrödinger equation with the nonlinearity $|u|^{2p}u$,, J. Differential Equations, 244 (2008), 2185.  doi: 10.1016/j.jde.2008.02.015.  Google Scholar

[5]

B. P. Luce, Homoclinic explosions in the complex Ginzburg-Landau equation,, Physica D, 84 (1995), 553.  doi: 10.1016/0167-2789(95)00047-8.  Google Scholar

[6]

S. C. Mancas and S. R. Choudhury, Bifurcations of plane wave (CW) solutions in the complex cubic-quintic Ginzburg-Landau equation,, Math. Comput. Simul., 74 (2007), 266.  doi: 10.1016/j.matcom.2006.10.009.  Google Scholar

[7]

G. Cruz-Pacheco, C. D. Levermore and B. P. Luce, Complex Ginzburg-Landau equations as perturbations of nonlinear Schrödinger equations: A Melnikov approach,, Physica D, 197 (2004), 269.  doi: 10.1016/j.physd.2004.07.012.  Google Scholar

[8]

J. Pöschel, Quasi-periodic solutions for a nonlinear wave equation,, Comment. Math. Helv., 71 (1996), 269.  doi: 10.1007/BF02566420.  Google Scholar

[9]

P. Takáč, Invariant $2$-tori in the time-dependent Ginzburg-Landau equation,, Nonlinearity, 5 (1992), 289.  doi: 10.1088/0951-7715/5/2/002.  Google Scholar

[10]

C. Valls, Quasiperiodic solutions for dissipative Boussinesq systems,, Comm. Math. Phys., 265 (2006), 305.  doi: 10.1007/s00220-006-0026-0.  Google Scholar

[11]

X. Yuan, Quasi-periodic solutions of nonlinear Schrödinger equations of higher dimension,, J. Differential Equations, 195 (2003), 230.  doi: 10.1016/S0022-0396(03)00095-0.  Google Scholar

[12]

X. Yuan, A KAM theorem with applications to partial differential equations of higher dimensions,, Comm. Math. Phys., 275 (2007), 97.  doi: 10.1007/s00220-007-0287-2.  Google Scholar

[1]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[2]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[3]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[4]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[5]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[6]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[7]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[8]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[9]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]