• Previous Article
    Convergence of differentiable functions on closed sets and remarks on the proofs of the "Converse Approximation Lemmas''
  • DCDS-S Home
  • This Issue
  • Next Article
    Quasi-periodic solutions for complex Ginzburg-Landau equation of nonlinearity $|u|^{2p}u$
December  2010, 3(4): 601-621. doi: 10.3934/dcdss.2010.3.601

Convergence radius in the Poincaré-Siegel problem

1. 

Dipartimento di Matematica, Universitµa degli Studi di Milano, via Saldini 50, 20133 | Milano, Italy

2. 

Scuola Normale Superiore, Piazza dei Cavalieri, 7, 56126, Pisa (PI)

Received  March 2009 Revised  May 2010 Published  August 2010

We reconsider the Poincaré-Siegel center problem, namely the problem of conjugating an analytic system of differential equations in the neighbourhood of an equilibrium to its linear part $\Lambda=\diag(\lambda_1,\ldots,\lambda_n)$. If the linear part is non--resonant we show that the convergence radius $r$ of the conjugating transformation satisfies $\log r(\Lambda )\ge -CB+C'$ with $C=1$ and a constant $C'$ not depending on $\Lambda$. The convergence condition is the same as the Bruno condition since $B = -\sum_{r\ge 1}2^{-r}\log\alpha_{2^r-1}$, where $\alpha_r = \min_{0\le s\le r} \beta_r$ for $r\ge 0$ and $\beta_r = \min_{j=1,\ldots,n}\ \ \ \min_{k\inZ_+^n,|k|=r+1}$ | < k, $\lambda$ > $- \lambda_j$|. Our lower bound improves the previous results for $n\gt 1$, where the known proofs give $C=2$. We also recall that $C=1$ is known to be the optimal value for the discrete time version of the center problem when $n=1$, namely the linearization problem for germs of holomorphic maps when the eigenvalue of the fixed point is on the unit circle.
Citation: Antonio Giorgilli, Stefano Marmi. Convergence radius in the Poincaré-Siegel problem. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 601-621. doi: 10.3934/dcdss.2010.3.601
References:
[1]

V. I. Arnold, Proof of a theorem of A. N. Kolmogorov on the persistence of quasi-periodic motions under small perturbations of the Hamiltonian,, Usp. Mat. Nauk, 18 (1963).   Google Scholar

[2]

V. I. Arnold, Small denominators and problems of stability of motion in classical and celestial mechanics,, Usp. Math. Nauk {\bf 18} (1963), 18 (1963).  doi: 10.1070/RM1963v018n06ABEH001143.  Google Scholar

[3]

A. Berretti and G. Gentile, Scaling properties for the radius of convergence of a Lindstedt series: the standard map,, J. Math. Pures Appl., 78 (1999), 159.   Google Scholar

[4]

A. Berretti and G. Gentile, Bryuno function and the standard map,, Comm. Math. Phys., 220 (2001), 623.   Google Scholar

[5]

A. D. Bruno, Analytical form of differential equations,, Trans. Moscow Math. Soc., 25 (1971), 131.   Google Scholar

[6]

X. Buff and A. Chéritat, The Brjuno function continuously estimates the size of quadratic Siegel disks,, Ann. of Math., 164 (2006), 265.   Google Scholar

[7]

T. Carletti and S. Marmi, Linearization of analytic and non-analytic germs of diffeomorphisms of $C, 0)$,, Bull. Soc. Math. France, 128 (2000), 69.   Google Scholar

[8]

A. M. Davie, The critical function for the semistandard map,, Nonlinearity, 7 (1994), 219.   Google Scholar

[9]

A. Giorgilli, Quantitative methods in classical perturbation theory,, in Proceedings of the NATO ASI school, 336 (1995), 21.   Google Scholar

[10]

A. Giorgilli and U. Locatelli, On classical series expansions for quasi-periodic motions,, MPEJ, 3 (1997).   Google Scholar

[11]

A. Giorgilli and U. Locatelli, A classical self-contained proof of Kolmogorov's theorem on invariant tori,, in Proceedings of the NATO ASI school, 533 (1999), 72.   Google Scholar

[12]

W. Gröbner, "Die Lie-Reihen und Ihre Anwendungen,", VEB Deutscher Verlag der Wissenschaften, (1967).   Google Scholar

[13]

G. H. Hardy and E. M. Wright, "An Introduction to the Theory of Numbers,", Oxford University Press, (1979).   Google Scholar

[14]

A. N. Kolmogorov, Preservation of conditionally periodic movements with small change in the Hamilton function,, Dokl. Akad. Nauk SSSR, 98 (1954), 71.   Google Scholar

[15]

A. Ya. Khinchin, "Continued Fractions,", The University of Chicago Press, (1964).   Google Scholar

[16]

S. Marmi, Critical functions for complex analytic maps,, J. Phys. A: Math. Gen., 23 (1990), 3447.   Google Scholar

[17]

S. Marmi and J. Stark, On the standard map critical function,, Nonlinearity, 5 (1992), 743.   Google Scholar

[18]

S. Marmi and J.-C. Yoccoz, Some open problems related to small divisors,, in, 1784 (2002), 175.   Google Scholar

[19]

S. Marmi, P. Moussa and J.-C. Yoccoz, The Brjuno functions and their regularity properties,, Comm. Math. Phys., 186 (1997), 265.   Google Scholar

[20]

J. Moser, On invariant curves of area-preserving mappings of an annulus,, Nachr. Akad. Wiss. Gött., (1962), 1.   Google Scholar

[21]

J. Moser, Convergent series expansions for quasi-periodic motions,, Math. Ann., 169 (1967), 136.   Google Scholar

[22]

R. Pérez-Marco, Fixed points and circle maps,, Acta Math., 179 (1997), 243.   Google Scholar

[23]

H. Poincaré, Mémoire sur les courbes définies par une équation différentielle,, Journal de Mathématiques, 7 (1881), 375.   Google Scholar

[24]

H. Rüssmann, Über die iteration analytischer Funktionen,, J. Math. Mech., 17 (1967), 523.   Google Scholar

[25]

E. Schröder, Über iterierte Funktionen,, Math. Ann., 3 (1871), 296.   Google Scholar

[26]

C. L. Siegel, Iteration of analytic functions,, Annals of Math., 43 (1942), 607.   Google Scholar

[27]

C. L. Siegel, Über die normalform analytischer differentialgleichungen in der Nähe einer Gleichgewichtslösung,, Nachr. Akad. Wiss. Göttingen, (1952), 21.   Google Scholar

[28]

C. L. Siegel, and J. K. Moser, "Lectures on Celestial Mechanics,", Springer-Verlag, (1971).   Google Scholar

[29]

J.-C. Yoccoz, Théeorème de Siegel, nombres de Bruno et polynômes quadratiques,, Astérisque, 231 (1995), 3.   Google Scholar

[30]

J.-C. Yoccoz, Analytic linearization of circle diffeomorphisms,, in, 1784 (2002), 125.   Google Scholar

show all references

References:
[1]

V. I. Arnold, Proof of a theorem of A. N. Kolmogorov on the persistence of quasi-periodic motions under small perturbations of the Hamiltonian,, Usp. Mat. Nauk, 18 (1963).   Google Scholar

[2]

V. I. Arnold, Small denominators and problems of stability of motion in classical and celestial mechanics,, Usp. Math. Nauk {\bf 18} (1963), 18 (1963).  doi: 10.1070/RM1963v018n06ABEH001143.  Google Scholar

[3]

A. Berretti and G. Gentile, Scaling properties for the radius of convergence of a Lindstedt series: the standard map,, J. Math. Pures Appl., 78 (1999), 159.   Google Scholar

[4]

A. Berretti and G. Gentile, Bryuno function and the standard map,, Comm. Math. Phys., 220 (2001), 623.   Google Scholar

[5]

A. D. Bruno, Analytical form of differential equations,, Trans. Moscow Math. Soc., 25 (1971), 131.   Google Scholar

[6]

X. Buff and A. Chéritat, The Brjuno function continuously estimates the size of quadratic Siegel disks,, Ann. of Math., 164 (2006), 265.   Google Scholar

[7]

T. Carletti and S. Marmi, Linearization of analytic and non-analytic germs of diffeomorphisms of $C, 0)$,, Bull. Soc. Math. France, 128 (2000), 69.   Google Scholar

[8]

A. M. Davie, The critical function for the semistandard map,, Nonlinearity, 7 (1994), 219.   Google Scholar

[9]

A. Giorgilli, Quantitative methods in classical perturbation theory,, in Proceedings of the NATO ASI school, 336 (1995), 21.   Google Scholar

[10]

A. Giorgilli and U. Locatelli, On classical series expansions for quasi-periodic motions,, MPEJ, 3 (1997).   Google Scholar

[11]

A. Giorgilli and U. Locatelli, A classical self-contained proof of Kolmogorov's theorem on invariant tori,, in Proceedings of the NATO ASI school, 533 (1999), 72.   Google Scholar

[12]

W. Gröbner, "Die Lie-Reihen und Ihre Anwendungen,", VEB Deutscher Verlag der Wissenschaften, (1967).   Google Scholar

[13]

G. H. Hardy and E. M. Wright, "An Introduction to the Theory of Numbers,", Oxford University Press, (1979).   Google Scholar

[14]

A. N. Kolmogorov, Preservation of conditionally periodic movements with small change in the Hamilton function,, Dokl. Akad. Nauk SSSR, 98 (1954), 71.   Google Scholar

[15]

A. Ya. Khinchin, "Continued Fractions,", The University of Chicago Press, (1964).   Google Scholar

[16]

S. Marmi, Critical functions for complex analytic maps,, J. Phys. A: Math. Gen., 23 (1990), 3447.   Google Scholar

[17]

S. Marmi and J. Stark, On the standard map critical function,, Nonlinearity, 5 (1992), 743.   Google Scholar

[18]

S. Marmi and J.-C. Yoccoz, Some open problems related to small divisors,, in, 1784 (2002), 175.   Google Scholar

[19]

S. Marmi, P. Moussa and J.-C. Yoccoz, The Brjuno functions and their regularity properties,, Comm. Math. Phys., 186 (1997), 265.   Google Scholar

[20]

J. Moser, On invariant curves of area-preserving mappings of an annulus,, Nachr. Akad. Wiss. Gött., (1962), 1.   Google Scholar

[21]

J. Moser, Convergent series expansions for quasi-periodic motions,, Math. Ann., 169 (1967), 136.   Google Scholar

[22]

R. Pérez-Marco, Fixed points and circle maps,, Acta Math., 179 (1997), 243.   Google Scholar

[23]

H. Poincaré, Mémoire sur les courbes définies par une équation différentielle,, Journal de Mathématiques, 7 (1881), 375.   Google Scholar

[24]

H. Rüssmann, Über die iteration analytischer Funktionen,, J. Math. Mech., 17 (1967), 523.   Google Scholar

[25]

E. Schröder, Über iterierte Funktionen,, Math. Ann., 3 (1871), 296.   Google Scholar

[26]

C. L. Siegel, Iteration of analytic functions,, Annals of Math., 43 (1942), 607.   Google Scholar

[27]

C. L. Siegel, Über die normalform analytischer differentialgleichungen in der Nähe einer Gleichgewichtslösung,, Nachr. Akad. Wiss. Göttingen, (1952), 21.   Google Scholar

[28]

C. L. Siegel, and J. K. Moser, "Lectures on Celestial Mechanics,", Springer-Verlag, (1971).   Google Scholar

[29]

J.-C. Yoccoz, Théeorème de Siegel, nombres de Bruno et polynômes quadratiques,, Astérisque, 231 (1995), 3.   Google Scholar

[30]

J.-C. Yoccoz, Analytic linearization of circle diffeomorphisms,, in, 1784 (2002), 125.   Google Scholar

[1]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[2]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[3]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[4]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[5]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[6]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]