-
Previous Article
Finite smooth normal forms and integrability of local families of vector fields
- DCDS-S Home
- This Issue
-
Next Article
Convergence of differentiable functions on closed sets and remarks on the proofs of the "Converse Approximation Lemmas''
Gevrey normal form and effective stability of Lagrangian tori
1. | University of Rousse, Department of Algebra and Geometry, 7012, Rousse, Bulgaria |
2. | Université de Nantes, Laboratoire de mathématiques Jean Leray, 2, rue de la Houssinière, BP 92208, 44072 Nantes Cedex 03, France |
References:
[1] |
Sh. Alimov, R. Ashurov and A. Pulatov, Multiple Fourier series and Fourier integrals, commutative harmonic analysis IV,, Encyclopaedia Math. Sci., 42 (1992), 1.
|
[2] |
A. Erdélyi, W. Magnus, F. Oberhettinger and F. Tricomi, "Higher Transcendental Functions,'' Vols. I, II,, McGraw-Hill Book Company, (1953).
|
[3] |
A. Giorgilli, A. Delshams, E. Fontich, L. Galgani and C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three-body problem,, J. Differential Equations, 77 (1989), 167.
doi: 10.1016/0022-0396(89)90161-7. |
[4] |
A. Giorgilli and A. Morbidelli, Invariant KAM tori and global stability for Hamiltonian systems, , Z. Angew. Math. Phys., 48 (1997), 102.
doi: 10.1007/PL00001462. |
[5] |
T. Gramchev and G. Popov, Nekhoroshev type estimates for billiard ball maps,, Annales de l'Institut Fourier, 45 (1995), 859.
|
[6] |
G. Iooss and E. Lombardi, Polynomial normal forms with exponentially small remainder for analytic vector fields,, J. Differential Equations, 212 (2005), 1.
doi: 10.1016/j.jde.2004.10.015. |
[7] |
G. Iooss and E. Lombardi, Normal forms with exponentially small remainder: application to homoclinic connections for the reversible $0^{2+}$$i\omega$ resonance,, C. R. Math. Acad. Sci. Paris, 339 (2004), 831.
|
[8] |
M. Herman, Inégalités "a priori'' pour des tores lagrangiens invariants par des difféomor-phismes symplectiques, (French) [A priori inequalities for Lagrangian tori invariant under symplectic diffeomorphisms],, Publ. Math. Inst. Hautes Études Sci., 70 (1989), 47.
|
[9] |
H. Komatsu, The implicit function theorem for ultradifferentiable mappings,, Proc. Japan Acad. Ser. A Math. Sci., 55 (1979), 69.
doi: 10.3792/pjaa.55.69. |
[10] |
V. F. Lazutkin, "KAM Theory and Semiclassical Approximations to Eigenfunctions,'', Springer-Verlag, (1993).
|
[11] |
J.-L. Lions and E. Magenes, "Problèmes aux Limites Non Homogènes et Applications,'' (French), Vol. 3, Travaux et recherches mathématiques 20,, Dunod, (1970).
|
[12] |
J.-P. Marco and D. Sauzin, Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems,, Publ. Math. Inst. Hautes Études Sci., 96 (2002), 199.
|
[13] |
A. Morbidelli and A. Giorgilli, On a connection between KAM and Nekhoroshev's theorems,, Phys. D, 86 (1995), 514.
doi: 10.1016/0167-2789(95)00199-E. |
[14] |
A. Morbidelli and A. Giorgilli, Superexponential stability of KAM tori,, J. Statist. Phys., 78 (1995), 1607.
doi: 10.1007/BF02180145. |
[15] |
F. W. J. Olver, "Asymptotics and Special Functions,'', Academic Press, (1974).
|
[16] |
G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms I - Birkhoff normal forms,, Ann. Henri Poincaré, 1 (2000), 223.
doi: 10.1007/PL00001004. |
[17] |
G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms II - Quantum Birkhoff normal forms,, Ann. Henri Poincaré, 1 (2000), 249.
doi: 10.1007/PL00001005. |
[18] |
G. Popov, KAM theorem for Gevrey Hamiltonians,, Ergodic Theory and Dynamical Systems, 24 (2004), 1753.
doi: 10.1017/S0143385704000458. |
[19] |
G. Popov, KAM theorem and quasimodes for Gevrey Hamiltonians,, Mat. Contemp., 26 (2004), 87.
|
[20] |
G. Popov and P. Topalov, Invariants of isospectral deformations and spectral rigidity, preprint,, \arXiv{0906.0449v1}., (). Google Scholar |
[21] |
F. Wagener, A note on Gevrey regular KAM theory and the inverse approximation lemma,, Dyn. Syst., 18 (2003), 159.
doi: 10.1080/1468936031000117857. |
[22] |
J. Xu and J. You, Gevrey-smoothness of invariant tori for analytic nearly integrable Hamiltonian systems under Rüssmann's non-degeneracy condition,, J. Differential Equations, 235 (2007), 609.
doi: 10.1016/j.jde.2006.12.001. |
show all references
References:
[1] |
Sh. Alimov, R. Ashurov and A. Pulatov, Multiple Fourier series and Fourier integrals, commutative harmonic analysis IV,, Encyclopaedia Math. Sci., 42 (1992), 1.
|
[2] |
A. Erdélyi, W. Magnus, F. Oberhettinger and F. Tricomi, "Higher Transcendental Functions,'' Vols. I, II,, McGraw-Hill Book Company, (1953).
|
[3] |
A. Giorgilli, A. Delshams, E. Fontich, L. Galgani and C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three-body problem,, J. Differential Equations, 77 (1989), 167.
doi: 10.1016/0022-0396(89)90161-7. |
[4] |
A. Giorgilli and A. Morbidelli, Invariant KAM tori and global stability for Hamiltonian systems, , Z. Angew. Math. Phys., 48 (1997), 102.
doi: 10.1007/PL00001462. |
[5] |
T. Gramchev and G. Popov, Nekhoroshev type estimates for billiard ball maps,, Annales de l'Institut Fourier, 45 (1995), 859.
|
[6] |
G. Iooss and E. Lombardi, Polynomial normal forms with exponentially small remainder for analytic vector fields,, J. Differential Equations, 212 (2005), 1.
doi: 10.1016/j.jde.2004.10.015. |
[7] |
G. Iooss and E. Lombardi, Normal forms with exponentially small remainder: application to homoclinic connections for the reversible $0^{2+}$$i\omega$ resonance,, C. R. Math. Acad. Sci. Paris, 339 (2004), 831.
|
[8] |
M. Herman, Inégalités "a priori'' pour des tores lagrangiens invariants par des difféomor-phismes symplectiques, (French) [A priori inequalities for Lagrangian tori invariant under symplectic diffeomorphisms],, Publ. Math. Inst. Hautes Études Sci., 70 (1989), 47.
|
[9] |
H. Komatsu, The implicit function theorem for ultradifferentiable mappings,, Proc. Japan Acad. Ser. A Math. Sci., 55 (1979), 69.
doi: 10.3792/pjaa.55.69. |
[10] |
V. F. Lazutkin, "KAM Theory and Semiclassical Approximations to Eigenfunctions,'', Springer-Verlag, (1993).
|
[11] |
J.-L. Lions and E. Magenes, "Problèmes aux Limites Non Homogènes et Applications,'' (French), Vol. 3, Travaux et recherches mathématiques 20,, Dunod, (1970).
|
[12] |
J.-P. Marco and D. Sauzin, Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems,, Publ. Math. Inst. Hautes Études Sci., 96 (2002), 199.
|
[13] |
A. Morbidelli and A. Giorgilli, On a connection between KAM and Nekhoroshev's theorems,, Phys. D, 86 (1995), 514.
doi: 10.1016/0167-2789(95)00199-E. |
[14] |
A. Morbidelli and A. Giorgilli, Superexponential stability of KAM tori,, J. Statist. Phys., 78 (1995), 1607.
doi: 10.1007/BF02180145. |
[15] |
F. W. J. Olver, "Asymptotics and Special Functions,'', Academic Press, (1974).
|
[16] |
G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms I - Birkhoff normal forms,, Ann. Henri Poincaré, 1 (2000), 223.
doi: 10.1007/PL00001004. |
[17] |
G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms II - Quantum Birkhoff normal forms,, Ann. Henri Poincaré, 1 (2000), 249.
doi: 10.1007/PL00001005. |
[18] |
G. Popov, KAM theorem for Gevrey Hamiltonians,, Ergodic Theory and Dynamical Systems, 24 (2004), 1753.
doi: 10.1017/S0143385704000458. |
[19] |
G. Popov, KAM theorem and quasimodes for Gevrey Hamiltonians,, Mat. Contemp., 26 (2004), 87.
|
[20] |
G. Popov and P. Topalov, Invariants of isospectral deformations and spectral rigidity, preprint,, \arXiv{0906.0449v1}., (). Google Scholar |
[21] |
F. Wagener, A note on Gevrey regular KAM theory and the inverse approximation lemma,, Dyn. Syst., 18 (2003), 159.
doi: 10.1080/1468936031000117857. |
[22] |
J. Xu and J. You, Gevrey-smoothness of invariant tori for analytic nearly integrable Hamiltonian systems under Rüssmann's non-degeneracy condition,, J. Differential Equations, 235 (2007), 609.
doi: 10.1016/j.jde.2006.12.001. |
[1] |
Sergio Zamora. Tori can't collapse to an interval. Electronic Research Archive, , () : -. doi: 10.3934/era.2021005 |
[2] |
Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269 |
[3] |
Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020349 |
[4] |
Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383 |
[5] |
Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347 |
[6] |
Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345 |
[7] |
Gaojun Luo, Xiwang Cao. Two classes of near-optimal codebooks with respect to the Welch bound. Advances in Mathematics of Communications, 2021, 15 (2) : 279-289. doi: 10.3934/amc.2020066 |
[8] |
Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361 |
[9] |
Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020120 |
[10] |
Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039 |
[11] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020451 |
[12] |
Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054 |
[13] |
Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020053 |
[14] |
Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2021, 15 (1) : 131-153. doi: 10.3934/amc.2020049 |
[15] |
Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021015 |
[16] |
Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020458 |
[17] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[18] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[19] |
Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051 |
[20] |
Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]