• Previous Article
    Finite smooth normal forms and integrability of local families of vector fields
  • DCDS-S Home
  • This Issue
  • Next Article
    Convergence of differentiable functions on closed sets and remarks on the proofs of the "Converse Approximation Lemmas''
December  2010, 3(4): 643-666. doi: 10.3934/dcdss.2010.3.643

Gevrey normal form and effective stability of Lagrangian tori

1. 

University of Rousse, Department of Algebra and Geometry, 7012, Rousse, Bulgaria

2. 

Université de Nantes, Laboratoire de mathématiques Jean Leray, 2, rue de la Houssinière, BP 92208, 44072 Nantes Cedex 03, France

Received  April 2009 Revised  June 2010 Published  August 2010

A Gevrey symplectic normal form of an analytic and more generally Gevrey smooth Hamiltonian near a Lagrangian invariant torus with a Diophantine vector of rotation is obtained. The normal form implies effective stability of the quasi-periodic motion near the torus.
Citation: Todor Mitev, Georgi Popov. Gevrey normal form and effective stability of Lagrangian tori. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 643-666. doi: 10.3934/dcdss.2010.3.643
References:
[1]

Sh. Alimov, R. Ashurov and A. Pulatov, Multiple Fourier series and Fourier integrals, commutative harmonic analysis IV,, Encyclopaedia Math. Sci., 42 (1992), 1.   Google Scholar

[2]

A. Erdélyi, W. Magnus, F. Oberhettinger and F. Tricomi, "Higher Transcendental Functions,'' Vols. I, II,, McGraw-Hill Book Company, (1953).   Google Scholar

[3]

A. Giorgilli, A. Delshams, E. Fontich, L. Galgani and C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three-body problem,, J. Differential Equations, 77 (1989), 167.  doi: 10.1016/0022-0396(89)90161-7.  Google Scholar

[4]

A. Giorgilli and A. Morbidelli, Invariant KAM tori and global stability for Hamiltonian systems, , Z. Angew. Math. Phys., 48 (1997), 102.  doi: 10.1007/PL00001462.  Google Scholar

[5]

T. Gramchev and G. Popov, Nekhoroshev type estimates for billiard ball maps,, Annales de l'Institut Fourier, 45 (1995), 859.   Google Scholar

[6]

G. Iooss and E. Lombardi, Polynomial normal forms with exponentially small remainder for analytic vector fields,, J. Differential Equations, 212 (2005), 1.  doi: 10.1016/j.jde.2004.10.015.  Google Scholar

[7]

G. Iooss and E. Lombardi, Normal forms with exponentially small remainder: application to homoclinic connections for the reversible $0^{2+}$$i\omega$ resonance,, C. R. Math. Acad. Sci. Paris, 339 (2004), 831.   Google Scholar

[8]

M. Herman, Inégalités "a priori'' pour des tores lagrangiens invariants par des difféomor-phismes symplectiques, (French) [A priori inequalities for Lagrangian tori invariant under symplectic diffeomorphisms],, Publ. Math. Inst. Hautes Études Sci., 70 (1989), 47.   Google Scholar

[9]

H. Komatsu, The implicit function theorem for ultradifferentiable mappings,, Proc. Japan Acad. Ser. A Math. Sci., 55 (1979), 69.  doi: 10.3792/pjaa.55.69.  Google Scholar

[10]

V. F. Lazutkin, "KAM Theory and Semiclassical Approximations to Eigenfunctions,'', Springer-Verlag, (1993).   Google Scholar

[11]

J.-L. Lions and E. Magenes, "Problèmes aux Limites Non Homogènes et Applications,'' (French), Vol. 3, Travaux et recherches mathématiques 20,, Dunod, (1970).   Google Scholar

[12]

J.-P. Marco and D. Sauzin, Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems,, Publ. Math. Inst. Hautes Études Sci., 96 (2002), 199.   Google Scholar

[13]

A. Morbidelli and A. Giorgilli, On a connection between KAM and Nekhoroshev's theorems,, Phys. D, 86 (1995), 514.  doi: 10.1016/0167-2789(95)00199-E.  Google Scholar

[14]

A. Morbidelli and A. Giorgilli, Superexponential stability of KAM tori,, J. Statist. Phys., 78 (1995), 1607.  doi: 10.1007/BF02180145.  Google Scholar

[15]

F. W. J. Olver, "Asymptotics and Special Functions,'', Academic Press, (1974).   Google Scholar

[16]

G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms I - Birkhoff normal forms,, Ann. Henri Poincaré, 1 (2000), 223.  doi: 10.1007/PL00001004.  Google Scholar

[17]

G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms II - Quantum Birkhoff normal forms,, Ann. Henri Poincaré, 1 (2000), 249.  doi: 10.1007/PL00001005.  Google Scholar

[18]

G. Popov, KAM theorem for Gevrey Hamiltonians,, Ergodic Theory and Dynamical Systems, 24 (2004), 1753.  doi: 10.1017/S0143385704000458.  Google Scholar

[19]

G. Popov, KAM theorem and quasimodes for Gevrey Hamiltonians,, Mat. Contemp., 26 (2004), 87.   Google Scholar

[20]

G. Popov and P. Topalov, Invariants of isospectral deformations and spectral rigidity, preprint,, \arXiv{0906.0449v1}., ().   Google Scholar

[21]

F. Wagener, A note on Gevrey regular KAM theory and the inverse approximation lemma,, Dyn. Syst., 18 (2003), 159.  doi: 10.1080/1468936031000117857.  Google Scholar

[22]

J. Xu and J. You, Gevrey-smoothness of invariant tori for analytic nearly integrable Hamiltonian systems under Rüssmann's non-degeneracy condition,, J. Differential Equations, 235 (2007), 609.  doi: 10.1016/j.jde.2006.12.001.  Google Scholar

show all references

References:
[1]

Sh. Alimov, R. Ashurov and A. Pulatov, Multiple Fourier series and Fourier integrals, commutative harmonic analysis IV,, Encyclopaedia Math. Sci., 42 (1992), 1.   Google Scholar

[2]

A. Erdélyi, W. Magnus, F. Oberhettinger and F. Tricomi, "Higher Transcendental Functions,'' Vols. I, II,, McGraw-Hill Book Company, (1953).   Google Scholar

[3]

A. Giorgilli, A. Delshams, E. Fontich, L. Galgani and C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three-body problem,, J. Differential Equations, 77 (1989), 167.  doi: 10.1016/0022-0396(89)90161-7.  Google Scholar

[4]

A. Giorgilli and A. Morbidelli, Invariant KAM tori and global stability for Hamiltonian systems, , Z. Angew. Math. Phys., 48 (1997), 102.  doi: 10.1007/PL00001462.  Google Scholar

[5]

T. Gramchev and G. Popov, Nekhoroshev type estimates for billiard ball maps,, Annales de l'Institut Fourier, 45 (1995), 859.   Google Scholar

[6]

G. Iooss and E. Lombardi, Polynomial normal forms with exponentially small remainder for analytic vector fields,, J. Differential Equations, 212 (2005), 1.  doi: 10.1016/j.jde.2004.10.015.  Google Scholar

[7]

G. Iooss and E. Lombardi, Normal forms with exponentially small remainder: application to homoclinic connections for the reversible $0^{2+}$$i\omega$ resonance,, C. R. Math. Acad. Sci. Paris, 339 (2004), 831.   Google Scholar

[8]

M. Herman, Inégalités "a priori'' pour des tores lagrangiens invariants par des difféomor-phismes symplectiques, (French) [A priori inequalities for Lagrangian tori invariant under symplectic diffeomorphisms],, Publ. Math. Inst. Hautes Études Sci., 70 (1989), 47.   Google Scholar

[9]

H. Komatsu, The implicit function theorem for ultradifferentiable mappings,, Proc. Japan Acad. Ser. A Math. Sci., 55 (1979), 69.  doi: 10.3792/pjaa.55.69.  Google Scholar

[10]

V. F. Lazutkin, "KAM Theory and Semiclassical Approximations to Eigenfunctions,'', Springer-Verlag, (1993).   Google Scholar

[11]

J.-L. Lions and E. Magenes, "Problèmes aux Limites Non Homogènes et Applications,'' (French), Vol. 3, Travaux et recherches mathématiques 20,, Dunod, (1970).   Google Scholar

[12]

J.-P. Marco and D. Sauzin, Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems,, Publ. Math. Inst. Hautes Études Sci., 96 (2002), 199.   Google Scholar

[13]

A. Morbidelli and A. Giorgilli, On a connection between KAM and Nekhoroshev's theorems,, Phys. D, 86 (1995), 514.  doi: 10.1016/0167-2789(95)00199-E.  Google Scholar

[14]

A. Morbidelli and A. Giorgilli, Superexponential stability of KAM tori,, J. Statist. Phys., 78 (1995), 1607.  doi: 10.1007/BF02180145.  Google Scholar

[15]

F. W. J. Olver, "Asymptotics and Special Functions,'', Academic Press, (1974).   Google Scholar

[16]

G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms I - Birkhoff normal forms,, Ann. Henri Poincaré, 1 (2000), 223.  doi: 10.1007/PL00001004.  Google Scholar

[17]

G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms II - Quantum Birkhoff normal forms,, Ann. Henri Poincaré, 1 (2000), 249.  doi: 10.1007/PL00001005.  Google Scholar

[18]

G. Popov, KAM theorem for Gevrey Hamiltonians,, Ergodic Theory and Dynamical Systems, 24 (2004), 1753.  doi: 10.1017/S0143385704000458.  Google Scholar

[19]

G. Popov, KAM theorem and quasimodes for Gevrey Hamiltonians,, Mat. Contemp., 26 (2004), 87.   Google Scholar

[20]

G. Popov and P. Topalov, Invariants of isospectral deformations and spectral rigidity, preprint,, \arXiv{0906.0449v1}., ().   Google Scholar

[21]

F. Wagener, A note on Gevrey regular KAM theory and the inverse approximation lemma,, Dyn. Syst., 18 (2003), 159.  doi: 10.1080/1468936031000117857.  Google Scholar

[22]

J. Xu and J. You, Gevrey-smoothness of invariant tori for analytic nearly integrable Hamiltonian systems under Rüssmann's non-degeneracy condition,, J. Differential Equations, 235 (2007), 609.  doi: 10.1016/j.jde.2006.12.001.  Google Scholar

[1]

Sergio Zamora. Tori can't collapse to an interval. Electronic Research Archive, , () : -. doi: 10.3934/era.2021005

[2]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[3]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[4]

Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383

[5]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[6]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[7]

Gaojun Luo, Xiwang Cao. Two classes of near-optimal codebooks with respect to the Welch bound. Advances in Mathematics of Communications, 2021, 15 (2) : 279-289. doi: 10.3934/amc.2020066

[8]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[9]

Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020120

[10]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[11]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[12]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[13]

Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020053

[14]

Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2021, 15 (1) : 131-153. doi: 10.3934/amc.2020049

[15]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[16]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[17]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[18]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[19]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[20]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]